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Abstract

We propose to further close the gap between self-
supervised and fully-supervised methods for the single view
depth estimation (SVDE) task in terms of the levels of detail
and sharpness in the estimated depth maps. Detailed SVDE
is challenging as even fully-supervised methods struggle
to obtain detail-preserving depth estimates. While recent
works have proposed exploiting semantic masks to improve
the structural information in the estimated depth maps, our
proposed method yields detail-preserving depth estimates
from a single forward pass without increasing the computa-
tional cost or requiring additional data. We achieve this by
exploiting a missing component in SVDE, Self-Supervised
Structural Sharpening, referred to as S4. S4 is a mech-
anism that encourages a similar level of detail between the
RGB input and the depth/disparity output. To this extent, we
propose a novel DispNet-S4 network for detail-preserving
SVDE. Our network exploits un-blurring and un-noising
tasks of clean input images for learning S4 without the
need for either additional data (e.g., segmentation masks,
matting maps, etc.) or advanced network blocks (atten-
tion, transformers, etc.). The recovered structural details in
the un-blurring and un-noising operations are transferred
to the estimated depth maps via adaptive convolutions to
yield structurally sharpened depths that are selectively used
for self-supervision. We provide extensive experimental re-
sults and ablation studies that show our proposed DispNet-
S4 network can yield fine details in the depth maps while
achieving quantitative metrics comparable to the state-of-
the-art for the challenging KITTI dataset.

1. Introduction
Predicting the world geometry or estimating the depths

from images is a fundamental problem in computer vision,
robotics, and computational imaging. The depth estima-
tion (DE) task is essential for downstream problems, such
as robotic navigation and grasping, de-focus blur/de-blur,

novel view synthesis [4, 26, 47, 50], de-hazing [28, 29], and
semantic segmentation [2, 18, 34, 43].

The advance of deep learning has shown its supremacy
over classical approaches that rely on sparse correspon-
dences and hard-coded assumptions [6, 27, 48] for both
multi-view and single view depth estimation (SVDE) tasks.
In particular, SVDE is a more challenging and ill-posed
problem than its multi-view counterpart, as it requires a
global and local understanding of the scene’s low and high-
level depth cues. Furthermore, it is even more challenging
to learn SVDE in a self-supervised manner, that is, without
the hard-to-obtain depth ground truths (GT).

Apart from the well-known issues that the self-
supervised monocular DE methods suffer from the artifacts
and inaccuracies in highly homogeneous and/or reflective
regions, occlusions, and independently moving objects, we
identify, in this paper, that the self-supervised DE models
lack an effective way to enforce structural similarity be-
tween the input RGB image and the output inverse depth
(also known as disparity). This lack of structural similar-
ity enforcement, combined with the weak supervision from
the adjacent frames’ photometric reconstructions, leads the
SVDE networks to generate depth estimates with much
fewer details and wider borders than the input RGB image,
as depicted in Fig. 1. The inaccurate borders of the rendered
depths harm downstream tasks that require high structural
details, such as Bokeh effects and augmented reality.

While previous works attempt to preserve such high
structural details by incorporating segmentation or matting
maps [16, 53], we realize that such structural information
is already given in the input image and that low-level vi-
sion pre-text tasks can be exploited to obtain a higher level
of details in the estimated depths. Our main contribution
in this paper is in Self-Supervised Structural Sharpen-
ing (S4). S4 is a combination of a novel learning pipeline,
network architecture, and loss functions to enforce detail-
preserving depth estimation. S4 closes the gap of details
between the network’s inputs and outputs by predicting un-
blurring and un-noising per-pixel adaptive kernels that re-



Figure 1. Our model learns to generate detail-preserving disparity maps by training with Self-Supervised Structural Sharpening (S4).

store a blindly blurred and noisy version of the input image.
The blindly blurred and noisy version of the input image is
used as a guide for the S4 to learn the structural details dur-
ing training. Note that in vanilla de-blurring and de-noising
tasks, the blurred and noisy image is the input to the net-
work, and the restored image is the output. In contrast, in
our un-blurring and un-noising, the input to the network is
the clean RGB image, and the outputs are the locally adap-
tive kernels. The resulting locally adaptive convolutions are
then applied to the network’s estimated disparity map to
obtain a structurally sharpened disparity, which shares the
same structural details as the restored blur and noisy image.
The structurally sharpened disparity is back again utilized
to self-supervise the network’s estimated disparity in a re-
cursively interactive manner, thus enforcing the estimated
disparity map to reach a level of high structural fidelity.

S4 has the properties of (i) significantly improving the
quality of the estimated depth maps (as depicted in Fig. 1),
(ii) removing the burden of estimating detailed structures
from the network, and (iii) achieves comparable to SOTA
performance on the challenging KITTI dataset.

2. Related Work
2.1. Fully-supervised learning of SVDE

The early work [3] on learning SVDE was proposed to
directly regress depth with a multi-scale deep network that
utilized a scale-invariant error to alleviate global scale am-
biguity. On the other hand, the work of Fu et al. [5] was pro-
posed to solve SVDE as an ordinal regression task by dis-
cretizing the output and the GT values for training, yielding
considerable performance gains. In the work of BTS [25],
instead of discretizing or regressing depth values, Lee et al.
proposed to predict local planar guidance that locally de-
scribes the 3D geometry of the scene in a low to full resolu-
tion fashion. Ranftl et al. [36] proposed a strategy for multi-
dataset training by optimizing an objective function that is
invariant to range and scale in depth values for each dataset.
The more recent work of Miangoleh et al. [32] attempted to
boost the performance of [36] by aggregating additional for-
ward passes of low and high resolution to enhance the net-
work’s receptive field while preserving the overall structure

details. Xian et al. [49] proposed to enhance the details in
the estimated depth maps with a structure ranking loss that
is guided by estimated instance segmentation masks and im-
age edges. More recent works have also explored the joint
learning of SVDE, and depth completion as in [14], while
others have explored incorporating vision transformers for
dense prediction [35].

2.2. Self-supervised learning of SVDE

Self-supervised learning of SVDE relies on photomet-
ric reconstruction losses that compare 3D projected training
images, guided by the estimated depths, with their corre-
sponding target images. Self-supervised SVDE can be di-
vided into learning from synchronized images (e.g. stereo
images) and learning from unsynchronized images (e.g.
monocular videos).

For the stereo cases, the works of Watson et al. [45] and
Tosi et al. [41] proposed to improve the earlier work of [9]
by incorporating and distilling the result of classical stereo
disparity estimation techniques, such as SGM [19], to pro-
vide proxy labels during training. Gonzalez and Kim [10]
proposed an SVDE method with an exponential disparity
quantization and a multi-view occlusion mask computation
technique that exploited the geometric properties of dispar-
ity probability volumes. Zhu et al. [53] proposed edge-
edge consistency between semantic segmentation maps and
depth maps via a morphing algorithm. Saeedan and Roth
[37] also exploited additional training information in the
form of panoptic segmentation masks in their guided align-
ment and smoothness losses. On the other hand, Gonzalez
and Kim [11] proposed a distilled matting Laplacian loss
for enhancing depth maps on the objects’ borders and the
use of pixel positional information for better learning from
randomly resized and cropped patches.

For the monocular video cases, Godard et al. proposed
auto-masking in their Monodepth2 [8] to improve the ex-
plainability masks in the earlier work of [52]. In contrast,
the work in [12] proposed a method for masking moving
objects in the scene by measuring and thresholding the
variance of the network’s output, achieving performance
gains in the self-supervised SVDE task. In [39], a learn-
able feature-metric loss is proposed instead of using L1 or



Figure 2. Proposed learning pipeline with our main contribution, the Self-Supervised Structural Sharpening (S4), highlighted.

SSIM [44] loss. Guizilini et al., in [15], proposed the Pack-
Net which contains 3D packing and unpacking blocks that
exploit sub-pixel [38] and 3D convolutions for end-to-end
structural preservation of details, yielding the SOTA results
for self-supervised SVDE from videos.

In their later work, Guizilini et al. [16] exploited seman-
tic segmentation into the PackNet decoder part as well as
a two-stage learning strategy for better handling of moving
objects in the scene. The work of Klinger et al. [24] also
proposed to handle moving objects with semantic guidance
by learning semantic segmentation and SVDE simultane-
ously, assuming that certain object classes move more of-
ten than others (e.g. cars, bikers, etc.). Jung et al. [22]
also proposed using semantics information in their triplet
loss to refine depth representations according to implicit se-
mantic guidance and a cross-task attention module for guid-
ing depth features to be more semantically consistent. The
recent work of Lyu et al. [31] proposed to improve Mon-
odepth2 [8] by implementing dense connections between
the encoder and the decoder and fusing them via squeeze
and excitation blocks [20], improving the level of details
and quantitative metrics considerably. Watson et al. [46]
explored learning depth estimation from multiple frames as
input by utilizing a Monodepth2 [8] as a teacher network
to identify unreliable pixels induced by static sequences or
moving objects.

3. Method

We propose a simple yet effective addition to self-
supervised SVDE pipelines, which exploits the untapped
low-level vision tasks of un-blurring and un-noising, re-
ferred to as Self-Supervised Structural Sharpening, or S4.
The overview of our proposed pipeline with S4 is depicted

in Fig. 2. We refer to the DispNet that utilizes S4 as
DispNet-S4. The DispNet-S4, with a convolutional auto-
encoder backbone similar to that of the works of [8, 11],
takes as input a single RGB image I0 along with its nor-
malized pixels’ coordinates information (U,V) (as in [11]).
DispNet-S4 outputs a probability disparity volume (logits)
DL (as in [10]) and per-pixel adaptive kernels which are
separated into vertical and horizontal components, Kv and
Kh respectively. The two separable kernels are estimated
via a separate branch in the last decoder stage, as depicted
in Fig. 2. DL, Kv , and Kv are then described by

DL,Kh,Kv = DispNet-S4(I0, (U,V)). (1)

The disparity logits DL ∈ Rn×H×W (for an input image
of resolution H×W ) are soft-maxed and channel-wise dot-
produced with their corresponding n disparity quantization
levels dn, yielding the final disparity estimate D0 = d⊙DL.
As shown in the bottom part of Fig. 2, DL is also utilized
for forward warping to project I0 onto the next and pre-
vious reference training frames I+1 and I−1, respectively.
Also, for this operation, the camera poses are estimated by
a PoseNet following the previous works of [8, 12, 52]. The
resulting novel views I′+1 and I′−1 are then compared against
their corresponding GTs with an occlusion and moving
object-aware photometric reconstruction loss, following the
previous literature [12].

Although originally devised for frame interpolation [33],
adaptive separable convolution kernels Kv and Kh can also
be utilized to approximate an nv × nh adaptive filter. nh

and nv are the number of kernel values in Kv and Kh, re-
spectively. In our S4, Kv and Kh filter a blindly noised
and blurred version of I0, denoted by IN0 , yielding the struc-
turally sharpened Is0 image. Is0 is compared against the input
image with a multi-scale L1 loss. We refer to this pre-text



task as un-blurring and un-noising. Note that DispNet-S4

cannot account for the amount of blur or noise as IN0 is not
an input, which differs from the standard de-noising and de-
blurring task which takes as input blur and noisy images and
outputs clean images. See Section 3.1 for more details on
S4 and learning un-blurring and un-noising.

Our novel pipeline with S4 tackles the lack of detail
preservation in self-supervision by transferring the struc-
tural details from the restored image Is0 into the estimated
disparity map D0 by applying the same locally adaptive
kernels, yielding the structurally sharpened Ds

0. Note that
this mechanism serves as the bridge for the interaction be-
tween the RGB domain and the depth domain via the lo-
cally learned adaptive convolution filters. In addition, we
guide the sharpening operation with the initial depth D0,
which helps alleviate non-structural artifacts that arise from
the high color guidance in the un-blurring and un-noising
task. This yields the depth-guided sharpened disparity map
Dg

0. See Section 3.2 for details on depth guided S4.
Finally, Dg

0 is back again to supervise the disparity es-
timate D0 via either multi-scale L2 or perceptual losses.
These losses also encourage the un-blurring and un-noising
operations to maintain the geometrical details in the image.
More details on loss functions are available in Section 3.3.

3.1. Self-Supervised Structural Sharpening (S4)

The view synthesis losses in Fig. 2 provide the main
source of 3D self-supervision, as the network has to learn
the correct depth probabilities in DL to properly perform
forward warping for all images in the training dataset. How-
ever, these losses are unable to enforce the SVDE network
learning the high level of structural details, such as the ones
needed to properly represent the geometries of thin struc-
tures and accurate borders of the objects in the scene. This is
because ‘thicker’ depth maps that leak into the background
better warp objects with a large variety of dimensions pro-
viding an ‘easy’ way to minimize the loss functions.

Enforcing the structural similarity between the RGB in-
put and the disparity output is not a straightforward task.
Disparity (inverse depth) maps are invariant to shadows, re-
flections, and color changes in the scene, which are abun-
dant in RGB images. To bring rich details of input RGB
images into the disparity domain, we propose, for the first
time, blind un-blurring and un-noising as a pre-text task via
locally adaptive convolutions. By solving this task, we can
transfer the structural details from the RGB image into the
depth output, creating a bridge for self-supervised structural
sharpening.

3.1.1 Learning blind un-blurring and un-noising

Similar to how the prefix de- tends to indicate action and
un- connotes a passive status, we propose un-blurring and

un-noising, where we learn how to blindly restore blur and
noisy image versions of the already clean and un-distorted
input image as shown in Fig. 3-(a). In this setting, the net-
work has to predict kernel values that properly filter the in-
put image, regardless of the window size and standard de-
viation of the applied Gaussian blur and noise. We hypoth-
esize that learning the blind un-blurring and un-noising en-
forces the network to learn a rudimentary color-guided seg-
mentation, as suggested by the structurally sharp but smooth
restored images Is0 in Fig. 3-(a). The locally adaptive and
separable filtering operation can be expressed as

Is0(u, v) =
nv∑
j=1

kv,s
u,v,j

nh∑
i=1

kh,s
u,v,iI

N
0 (u+ i− nh

2 , v + j − nv

2 )

(2)
where Is0(u, v) denotes a restored pixel at location (u, v)
using point-wise separable vertical and horizontal kernels
kv
u,v and kh

u,v . The adaptive separable kernels are pre-
processed by kv,s

u,v = σ(kv
u,v) and kh,s

u,v = σ(kh
u,v) where

σ(·) denotes the soft-max operation, that is, the resulting re-
stored pixel color is a combination of the colors in the local
nv × nh window. In Eq. 2, the inner summation describes
the horizontal filtering, and the outer summation performs
the vertical filtering.

In particular, un-blurring forces the network to learn
sharpening in the color edges, while un-noising guides it
to learn smoothing in the homogeneous regions. Together,
they guide the network to perform structural sharpening of
the blindly blurred and noisy image IN0 into the clean pre-
diction Is0. Surprisingly, this is a very simple task for the net-
work to learn, as it already knows all the structural details
from the un-distorted input image I0. We have observed that
the loss for this pre-text task reaches values close to its op-
timal point in just a couple of epochs. We apply a random
Gaussian blur window size from K = 1 × 1 (or identity)
to K = 31 × 31, where the standard deviation is set to
σ = k/3. For the random noise, we utilized speckle noise,
which randomly scales RGB values with a probability of
10% but any type of noise should suffice.

3.1.2 Structural sharpening of depth

The recovered structures in the clean prediction Is0 can be
transferred to the network’s estimated disparity map D0 by
applying the same local adaptive filtering for D0 as done
for Is0. The result is the structurally sharpened disparity Ds

0,
which shares a similar level of detail as the restored image
Is0, as seen in the top-right region of Fig. 3-(b).

We can take advantage of Ds
0 by using it as a “teacher”

for the network’s output D0, as depicted by the perceptual
loss in Fig. 2. We noted that the perceptual loss [21] was
more effective than other losses such as L1 or L2, as it com-
pares not only the individual pixel disparity values but also



Figure 3. Un-blurring and un-noising in our S4. a) Restoration of blindly blurred and noisy images. b) Sharpening of the estimated
disparity D0. The guided Dg

0 is structurally sharper than D0 with considerably fewer artifacts than Ds
0.

their structures and relationships with their nearby pixels as
given by the VGG’s [40] receptive field.

3.2. Depth guided S4

Disparity or depth information can also be utilized to
guide the adaptive filtering operation by lowering the value
of the locally adaptive filter weights for the pixels that are
much closer or farther than the target center pixel. While
Ds

0 is obtained by adaptively filtering the D0 according to
Eq. 2, a guided Dg

0 can be described by re-writing Eq. 2 as:

Dg
0(u, v) =

nv∑
j=1

kv,g,s
u,v,j

nh∑
i=1

kh,g,s
u,v,iD0(u+ i− nh

2 , v+j− nv

2 )

(3)
where kh,g,s

u,v,i and kv,g,s
u,v,j denote the horizontal ith and verti-

cal jth disparity-guided kernel elements for a pixel at (u, v),
respectively. We define kh,g,s

u,v = σ(kh
u,v+gh(u, v)), where

the horizontal guidance, gh(u, v)) is given by

gh(u, v) = α− β

(
dherr

max(dherr) + ϵ

)2

, (4)

where dherr are the errors between the target center pixel at
(u, v) and its local horizontal neighbors, as given by

dherr(u, v) =

∣∣∣∣∣∣∣∣D0(u, v)−
[
D0(u+ x, v)

]x=nh

2

x=−nh

2

∣∣∣∣∣∣∣∣, (5)

α and β are the coefficients of the inverted parabola which
is a function of the normalized errors, and ϵ = 1 × 10−5

provides numerical stability. kv,g,s
u,v,j is obtained in a simi-

lar manner following Eqs. 4 and 5 for the vertical kernel
elements. We set α = 1 and β = 4 to provide positive guid-
ance when the normalized error is smaller than 50% and
negative guidance when the normalized error is larger than
50%. Depth-guided S4 helps in obtaining detailed dispar-
ity maps with considerably fewer artifacts, as shown in the

bottom-right region of Fig. 3-(b). Note that, as shown in
Fig. 2, Dg

0 is only computed during training and used as a
pseudo-GT to infuse a greater level of detail into D0.

3.3. Loss Functions

The total loss function l for the self-supervision of our
DispNet-S4 is a combination of view synthesis loss which
provides the main 3D self-supervision l−1

syn + l+1
syn, edge-

preserving disparity smoothness loss lds (weighed by αds =
0.1 as in [9,10]), and the proposed S4 loss lS4 , as given by

l = l−1
syn + l+1

syn + αdslds + lS4 . (6)

3.3.1 The S4 loss

The proposed novel S4 loss (lS4 ) consists of the un-blur and
un-noise loss lun and the depth detail loss ld as described in
Eq. 7. Using the un-blur and un-noise loss, our DispNet-S4

learns the locally adaptive point-wise kernels from a clean
input RGB image to restore the blindly blurred and noisy
image IN0 . The depth detail loss provides self-supervision
via the perceptual loss between the depth-guided sharpened
disparity Dg

0 and the DispNet-S4 estimated disparity D0.
Note that, as depicted in Fig. 2, the gradients of the D0

tensor are disabled when computing Dg
0, such that ld fo-

cuses more on matching the structural details between D0

and Dg
0. The S4 loss is defined as

lS4 = αunlun + αdld, (7)

where each variable is detailed in the next.

Un-blur and un-noise loss (lun) guides the network to
clean the blindly blurred and noised image IN0 via a
weighted multi-scale L1 loss between the restored image
Is0 and the original input image I0, as given by

lun =

3∑
k=0

||Dk
hf ⊙ (fk(Is0)− fk(I0))||1, (8)



where ⊙ denotes the element-wise product in Eq. 8, while
fk(·) represents a 2k down-sampling operation. At each
scale k, lun is weighted by the normalized high-frequency
component of D0, denoted by Dk

hf = fk(Dhf ). The weight-
ing of lun by Dhf loosely guides the network to restore
structural details more than other non-structural details (e.g.
textures, shadows, etc.). We empirically set αun = 1.

Depth detail loss (ld). This term enforces structural simi-
larities between the output and sharpened disparities D0 and
Dg

0 via a perceptual loss [21], as given by

ld =

3∑
l=0

||Dl
n ⊙ (ϕl(D0)− ϕl(Dg

0))||22, (9)

where ϕl(·) denote the lth maxpool layer of a pre-trained
VGG19 [40] in the perceptual loss. This loss is weighted by
the mean-normalized resized disparity Dl

n = gl(Dn) which
is given by

Dn(u, v) =

{
1 if D0(u, v)/D̄0 > 1

(D0(u, v)/D̄0)
3 o.w.

(10)
where D̄ is the mean disparity. Weighting the loss ld by Dn

helps alleviate depth artifacts in the structurally sharpened
disparities that are caused by the excessive color guidance.
While these artifacts can appear in any region, they are more
noticeable in faraway regions. This is because the photo-
metric reconstruction losses, which provide a weak 3D self-
supervision, are much smaller for the distant objects, which
can be estimated much closer or further without affecting
the resulting synthesized novel views much. We observed
that using the estimated depth information to guide the dis-
tortion operations (noise and blur) in IN0 yielded similar re-
sults as weighting ld by Dn. However, for simplicity, we
only weigh ld by Dn in this paper.

4. Experiments and Results
We implemented our network and training methods with

PyTorch and trained on an NVIDIA A100 GPU with a batch
size of 8 by the Adam [23] optimizer (with β1 and β2 set to
0.9 and 0.999, respectively) for 105 epochs on the KITTI
Eigen train split and on CityScapes. The initial learning
rates were respectively set to 1 × 10−4 and 5 × 10−5 for
KITTI [7] and CityScapes [1], and halved at 55, 75, and
95 epochs. We used 31 channels in DL and 15 kernel el-
ements for Kh and Kh each. For a fair comparison with
the previous works [8, 12, 15, 22, 31], we adopted random
resizing from a factor of 0.5 to 1.5, followed by 640×192
random cropping, random horizontal flip, random gamma,
color, and brightness shifts.

The KITTI [7] dataset. We utilized the Eigen split [3]
from the KITTI dataset for training and testing. The Eigen

split contains 22,600 train images and 697 test images. Fur-
thermore, we adopted the improved version of this test split
[42] which contains 652 images with denser depth ground
truths that are obtained by selectively aggregating LiDAR
points from 5 consecutive frames.

The CityScapes [1] dataset. To test the generaliza-
tion capability of S4 we also trained the Dispnet-S4 on
the CityScapes dataset. The CityScapes dataset contains
about 3K images surrounded by 29 frames each. The whole
training sequences consist of 80K images. To realize large
enough amounts of motion between frames, we halved the
frame rate by randomly skipping odd or even frames.

4.1. Results on KITTI

We present our quantitative results in Table 1 and our
qualitative results in Fig. 4. As shown in Table 1, we
achieve the best performance in all metrics for the improved
Kitti Eigen test split [42], and the best RMSE metric on
the original split [3]. However, it should be noted that the
top performers in the improved split such as PackNet [15],
AQUANet [12], and our DispNet-S4 have shown slightly
inferior performance in the original split. This is due to up
to 5× sparser depth GT in the original split, which benefits
other methods that yield blurrier results.

In addition, we show the generalization ability of our
proposed method by incorporating S4 into the Monodepth2
[8] and PLADENet [11], denoted by Monodepth2-S4 and
PLADENet-S4, respectively in Table 1. The consistent
performance improvement of Monodepth2-S4 vs Mon-
odepth2 shows that S4 can also benefit methods that learn
from monocular videos with auto-masking and backward-
warping-based loss functions [8]. On the other hand,
the higher performance of PLADENet-S4 over PLADENet
shows that our method can also benefit methods that learn
SVDE from synchronized stereo images.

Qualitatively, our method also outperforms the recent
works [15, 22, 25, 31] by producing very detailed depths in
all image regions, as depicted in Fig. 4. In particular, our
DispNet-S4 is the only model that can represent the geo-
metrical details in the threes in rows 1, 3, and 4. Our net-
work with S4 also gets the best contours for the traffic signs
and lights in rows 2, 5, and 6, while the other methods yield
rather over-smooth depth maps. Furthermore, our method
generates depth maps with the least amount of depth arti-
facts in the sky regions.

4.2. Ablation Studies

We ablate the effects of our novel training strategy with
S4 on KITTI [7] and present the results in Table 2 and Fig.
5. The ‘Baseline’ DispNet, does not incorporate our S4

training strategy and loss functions. Instead, the baseline
is trained for self-supervised SVDE from videos following
[12] without their adaptive quantization. As can be seen in



Figure 4. Qualitative comparisons on KITTI [7] among self-supervised methods.

Ref Method Sup. Par(M) abs rel↓ sq rel↓ rmse↓ rmselog ↓ δ1 ↑ δ2 ↑ δ3 ↑
[30] Luo et al. D+S - 0.094 0.626 4.252 0.177 0.891 0.965 0.984
[17] Gur et al. DoF - 0.110 0.666 4.186 0.168 0.880 0.966 0.988
[8] Monodepth2 V 14 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Our Monodepth2-S4 V 14 0.112 0.876 4.754 0.187 0.882 0.962 0.982
[31] HR-Depth V 14 0.111 0.833 4.673 0.187 0.882 0.961 0.982
[22] FSRE-DepthR18 V+Se 25 0.105 0.722 4.547 0.182 0.886 0.964 0.984
[15] PackNet V 120 0.107 0.802 4.538 0.186 0.889 0.962 0.981
[22] FSRE-DepthR50 V+Se 25 0.102 0.675 4.393 0.178 0.893 0.966 0.984
[16] Guizilini et al. * V+Se 140 0.100 0.761 4.270 0.175 0.902 0.965 0.982
[12] AQUANet V 14 0.115 0.656 4.251 0.186 0.875 0.959 0.983
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[7

]

our DispNet-S4 V 14 0.112 0.676 4.206 0.181 0.881 0.963 0.984
[51] Yin et al. D 113 0.072 - 3.258 0.117 0.938 0.990 0.998
[5] DORN D 51 0.072 0.307 2.727 0.120 0.932 0.984 0.995
[8] Monodepth2 V+S 14 0.087 0.479 3.595 0.131 0.916 0.984 0.996
[45] DepthHints SSGM 35 0.074 0.364 3.202 0.114 0.936 0.989 0.997
[53] Edge-of-Depth S - 0.076 0.348 3.117 0.113 0.938 0.990 0.997
[11] PLADENet S 15 0.068 0.291 2.974 0.107 0.942 0.991 0.998
our PLADENet-S4 S 15 0.068 0.289 2.914 0.107 0.943 0.991 0.998
[8] Monodepth2 V 14 0.092 0.536 3.749 0.135 0.916 0.984 0.995
[31] HR-Depth V 14 0.087 0.507 3.787 0.132 0.919 0.983 0.995
[22] FSRE-DepthR18 V+Se 25 0.084 0.436 3.740 0.129 0.919 0.985 0.996
[15] PackNet V 120 0.078 0.420 3.485 0.121 0.931 0.986 0.996
[12] AQUANet V 14 0.077 0.324 3.032 0.115 0.938 0.989 0.997

Im
pr

ov
ed

Te
st

Sp
lit

[4
2]

our DispNet-S4 V 14 0.075 0.316 3.020 0.112 0.940 0.990 0.998

Table 1. Comparison to existing SVDE methods on the KITTI Eigen Split [3]. DoF: supervised by depth of field. D: depth-supervised. V,
V+Se, S, and SSGM: Self-supervised from video, video+semantics, stereo, and stereo+SGM. V models use median scaling. Error metrics
(defined in [3]) are ↓ the lower the better, and accuracy metrics are ↑ the higher the better. * pre-trained on [1].

the first column of Fig. 5, the baseline network yields noisy
depth maps with no clear object borders. Enabling lun while
keeping ld disabled (no self-supervised structural sharpen-
ing) already brings marginal quantitative improvements, as
denoted by ‘Multi-task learning’ in Table 2, but provides no

structural sharpening benefits in the estimated depth maps.
For the sake of completeness, we used a ‘Multi-scale L2’
loss instead of perceptual loss for our ld and obtained more
considerable quantitative and qualitative gains with respect
to the baseline. Moreover, the usage of perceptual loss be-



Figure 5. Ablation studies on our S4 loss.

Ablation Study abs rel↓ sq rel↓ rmse↓ rmselog ↓ δ1 ↑ δ2 ↑ δ3 ↑
Baseline (αun = 0, αd = 0) 0.079 0.347 3.105 0.119 0.934 0.987 0.997
Multi-task learning (αun = 1, αd = 0) 0.081 0.336 3.084 0.119 0.935 0.989 0.997
Multi-Scale L2 (αun = 1, αdms = 1) 0.077 0.332 3.075 0.115 0.939 0.989 0.997
Full DispNet-S4 (perceptual [21] loss) (αun = 1, αd = 0.01) 0.075 0.316 3.020 0.112 0.940 0.990 0.998

Baseline-CS (αun = 0, αd = 0) 0.136 0.952 4.434 0.181 0.848 0.964 0.986
Full-CS (αun = 1, αd = 0.001) 0.121 0.662 4.083 0.161 0.868 0.974 0.993

Table 2. Ablation studies of our DispNet-S4 on KITTI [7].

tween D0 and Dg
0 (denoted by ’Full DispNet-S4’) yields the

best KITTI metrics in Table 2 and the most detailed and
consistent depth maps as seen in Fig. 5. Finally, to show
that our S4 does not only work on KITTI, we trained our
DispNet-S4 on the CityScapes [1] dataset, as denoted by -
CS in Table 2. Again, our method with S4 yields consistent
improvements over the Baseline-CS model.

5. Discussion
While our proposed method yields quantitative results

on KITTI in pair with the SOTA, it clearly generates depth
maps with more precise boundaries without requiring ad-
ditional inputs, as shown in Fig. 4. However, there still
exists room for further improvement in terms of learning
the feature extraction in our ld and using ‘intensity’ invari-
ant losses [13] to only penalize structure errors without af-
fecting the scale or shift of the depth values in our depth
detail losses. Furthermore, in order to clearly observe the
effects of our proposed S4, we opted for a vanilla CNN
with no advanced blocks, such as attention mechanisms
[31], information-preserving down- and up-convolutions
[15] and adaptive quantization [12] which could be further
integrated to improve the SVDE performance. Also, it is
worthwhile to investigate the benefits of un-blurring and
un-noising in other computer vision tasks where structural
details should be preserved, such as semantic segmentation
and self-supervised optical flow estimation.

6. Conclusions
We proposed a novel self-supervised structural sharpen-

ing technique, referred to as S4, to guide the SVDE net-
works in learning the high-level of details onto the estimated
depth maps. Our S4 serves as the bridge between the RGB
domain and the depth domain by transferring the recovered
structural details via the un-blurring and un-noising oper-
ations into the estimated depth maps by adaptive convolu-
tions to yield structurally sharpened depths. Such sharpened
depths are back again utilized for self-supervision without
any ground truth depth or segmentation maps. Our network
with S4 qualitatively outperforms and is quantitatively at
pair with previous SOTA self-supervised SVDE methods
without the need for advanced or heavy network blocks and
further approached the level of fully-supervised methods in
terms of preserving the structural details and sharpness that
are already present in the input RGB images.
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Cord, and Patrick Pérez. Dada: Depth-aware domain adap-
tation in semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7364–7373, 2019. 1

[44] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 3

[45] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
hints. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2162–2171, 2019. 2, 7

[46] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel
Brostow, and Michael Firman. The temporal opportunist:
Self-supervised multi-frame monocular depth. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1164–1174, June 2021.
3

[47] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a sin-
gle image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 1

[48] O. J. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgib-
bon. On new view synthesis using multiview stereo. In In
Proc. BMVC, pages 1120–1129, 2007. 1

[49] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin,
and Zhiguo Cao. Structure-guided ranking loss for single im-
age depth prediction. In The IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020. 2

[50] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao
Su, and Ravi Ramamoorthi. Deep view synthesis from sparse
photometric images. ACM Transactions on Graphics (ToG),
38(4):1–13, 2019. 1

[51] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. En-
forcing geometric constraints of virtual normal for depth pre-
diction. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), October 2019. 7

[52] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1851–1858, 2017. 2,
3



[53] Shengjie Zhu, Garrick Brazil, and Xiaoming Liu. The edge
of depth: Explicit constraints between segmentation and
depth. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020. 1,
2, 7


