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Abstract

We present initial results of a novel approach, merging
spoken language and visual object detection to generate
depth images in real-time monocular SLAM systems with-
out depth cameras. Our method uses a matrix representa-
tion for language and objects, and a partitioning algorithm
for association. Whisper processes spoken language, whilst
YOLO handles object detection. ORB-SLAM handles cam-
era pose estimation and scene mapping. Users can explore
the scene, observe detected objects, and offer depth infor-
mation via speech. Our system converts descriptions into
depth images. Experiments in indoor settings reveal results
comparable to RGB-D images, maintaining real-time per-
formance.

1. Introduction
Virtual assistants like Siri and Alexa are growing popular

for interacting with computational systems. In human-robot
interaction, spoken language has been employed for com-
manding robots to perform tasks [16]. This process entails
audio recording and conversion to text, extracting key ele-
ments to deduce actions like navigation, manipulation, and
carrying for the robot.

Recently, Large Language Models (LLMs) have been
employed to create end-to-end models that link language
and sensorial data, including visual data obtained from cam-
eras, to robot actions for high-level tasks [6, 9]. How-
ever, many of these LLMs require high-end GPUs and large
amounts of memory or access to cloud computing over the
internet.

This research focuses on depth estimation for monocular
SLAM [5], a crucial task in robotics, motivated by the ben-
efits of artificial systems interacting with users. Monocular
SLAM allows robots to create maps using environmental
visual information while estimating their position, offering
advantages like low-cost processing, minimal sensor needs,
and energy savings [12]. This is particularly relevant for

Figure 1. Our approach resolves the association between the ob-
jects mentioned in the spoken description and those detected with
YOLOv8 , seeking to assign depth values, which is then used to
create a depth image for RGB-D ORB-SLAM to build a map and
estimate the camera pose in real time.

small robots and wearable smart devices where depth cam-
eras may not be available [14].

In this work, we propose a new approach to generate
depth images using spoken descriptions processed online in
conjunction with object detection in images captured with a
monocular camera, facilitating metric monocular SLAM in
real-time, see Figure 1. Therefore, our contributions are:

• A methodology to codify and associate spoken de-
scription and visual object detection to assign depth
information to detected objects.

• Our initial results show that our approach produces ef-
fective depth images, providing sufficient metric infor-
mation for the SLAM system to build maps and esti-
mate camera poses close to those obtained when using
RGB and depth images obtained a depth camera.

2. Related Work
Natural language communication is essential, and incor-

porating this understanding into systems can improve their
performance. Combining vision and language tasks is an
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emerging research field impacting artificial intelligence sys-
tems. Prominent models like ALIGN [10] and CLIP [15]
have been developed for tasks like Vision-and-Language
Navigation [2, 8], aimed at developing agents that commu-
nicate with humans in natural language for 3D environment
navigation.

Another less explored task is using natural language for
monocular depth estimation, with DepthCLIP [19] being a
zero-shot monocular depth estimation method. ObjCAViT
[3] leverages auxiliary information from object detection
and language models (using YOLOv7 and CLIP).

Despite neural network models’ capabilities, limitations
like processing static images restrict their real-time applica-
tion [7]. Our proposal contributes to this area, eliminating
keywords or wake words for speech recognition and em-
ploying indefinite adjectives for more natural interaction.

3. Methodology
In this section, we describe our proposed approach,

where the transcription of the spoken description using
Whisper and the object detection using YOLOv8 produce
matrix representations that are used by the partitioning algo-
rithm to associate depths with the objects visually detected
by YOLOv8. After the association, a depth image is created
and published for RGB-D ORB-SLAM to use for feature
initialisation.

Our system uses Whisper [4], a state-of-the-art Auto-
matic Speech Recognition (ASR) system to perform tran-
scription and speech translation. The resulting text string is
then validated to ensure that the user has provided a valid
description of the image.

3.1. Syntactic Parser for Array Representation

Our syntactic parser receives as an entry a vali-
dated sentence and produces as output a four-tuple (or
a set of them) encoding the information regarding the
scene description generated by the user. Each four-tuple
(QUANTIFIER,OBJECT,DISTANCE, INDEX)
represents the description of a given OBJECT in the
scene, how many (QUANTIFIER) objects of the
same class are being described, which is the estimated
DISTANCE provided, and the corresponding INDEX
of the OBJECT in the object detection module.

As we allow the user to make brief pauses in between
each object description or to use the word “and” to indi-
cate the connection with the following object description,
the pre-processing consists into separate the transcription
of the input spoken by the user into phrases to be analysed.
Afterwards, we split the whole transcription considering the
connection word “and”, then we have a set of n sentences
depending on how many descriptions were identified.

For each sentence S, we verify it contains a description
for a valid object recognized by YOLOv8. We used the la-

bels included in coco128 [1], which is composed of 80 dif-
ferent entries like “laptop”, “person”, “cup”, “cell phone”,
“stop sign”, etc. Sentences that do not contain a valid ob-
ject are discarded. In each sentence describing a valid ob-
ject, the user can explicitly mention how many objects there
are in the scene (for example “There are 5 OBJECT at ...”)
or not (for example “There are some OBJECT at ... ”),
then it is needed to correctly determine the quantity asso-
ciated to the recognised object. For doing so, we look for
terms referring to a particular quantity like “a couple of”,
“a”, “an”, and “half” and replace them with the correspond-
ing numerical value: “2”, “1”, “1”, and “0.5”, respectively.
Other quantifiers like “a lot of”, “some”, “few”, “many”,
etc., are treated as particular cases that need to be disam-
biguated by the Partitioning Algorithm (See Section 3.3),
and during parsing are identified by a “0”. Once we iden-
tify how many valid objects are described by the user, it
is needed to extract the information related to the distance
estimation made by the user. In the final stage of the pars-
ing module, we generate a four-tuple for each sentence in
the transcription. As an example, given the transcribed text:
“There is one cup at 1.2 meters, a keyboard at 1.1 meters
and one laptop at 1 meter and another cup at 1.2 meters”,
the resulting vector would be: [[0, ‘cup’, ‘1.2’, 41], [‘1’,
‘keyboard’, ‘1.1’, 66], [1, ‘laptop’, ‘1’, 63], [1, ‘cup’, ‘1.2’,
41]].

3.2. Object Detection using YOLOv8

For real-time object detection on a frame-to-frame ba-
sis, we used the pre-trained neural network You Only Look
Once (YOLO) version 8, which we refer to in this work as
YOLOv8 [17, 18]. YOLOv8 was trained on the coco128
dataset [11], which contains 80 objects, and provides the
bounding box and label of the object detected in the image.

In our approach, YOLOv8 runs for each frame captured
by the camera held by the user. The user views the ob-
jects detected by YOLOv8 , with their corresponding labels
displayed within the bounding boxes. The user can then de-
scribe some or all of the objects in the scene, following the
format outlined in the previous section. Each time a ma-
trix representation of a spoken description is generated, the
image callback in the YOLOv8 node generates the corre-
sponding matrix representation. This matrix contains a row
for each bounding box area, and each column represents
each object detected by YOLOv8. A cell is non-zero if the
object in the column was linked to the corresponding area
in the row. For further referral, we will call these matrices
the language matrix and the YOLOv8 matrix

3.3. Partitioning Algorithm

We rely on the user’s spoken description to assist in the
association process, thereby guiding the visual SLAM pro-
cess by producing valuable depth images derived from these
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Algorithm 1 partitionGen

1: procedure PARTITIONGEN(dV, hdV, aV, haV, P, n,
k, s, level)

2: if k = 0 then
3: if s = n+ 1 then
4: score← 0
5: pdV← zeros(n)
6: for i← 0 to |P| − 1 do
7: saV← aV[P[i] : P[i+ 1]]
8: shaV← haV[P[i] : P[i+ 1]]
9: pV← []

10: for si← 0 to |saV| − 1 do
11: for ni← 0 to |shaV[si]| − 1 do
12: pV. append(saV[si])

13: mv ← mean(pV)
14: accS ← 0
15: for ni← 0 to |saV| − 1 do
16: accS ← accS + (mv − saV[ni])2

17: score← score+ accS
18: pdV[P[i] : P[i+ 1]]← dV[i]

19: if score < bestScore then
20: bestScore← score
21: bestDV← pdV
22: else
23: for i← s to n− k + 2 do
24: P. append(i)
25: if hdV[level] ̸= −1000 then
26: nobjs← sum(haV[s− 1 : i])
27: if hdV[level] ̸= nobjs then
28: P.pop()
29: continue
30: partitionGen(dV,hdV, aV,haV,P,n,k−

1, i + 1, level + 1)
31: P.pop()

associations. Therefore, if the scene contains multiple ob-
jects of the same category, the user can describe only the
depths of the objects whose bounding areas adhere to the as-
sumption that they are inversely proportional to the depth.
Thus, under these assumptions, we propose a partitioning
algorithm to solve the association between the matrix rep-
resentations.

To accomplish this, the rows of both matrices are sorted
in ascending order for the language matrix and in descend-
ing order for the YOLOv8 matrix. Note that both matrices
have the same number of columns but may vary in the num-
ber of rows, although it is expected that the language matrix
contains less or equal rows than the YOLOv8 matrix. For
each object in the i − th column of both matrices, a vec-
tor hdV will store non-zero values of the i − th column
in the language matrix, and dV will contain their corre-

Figure 2. Our partitioning algorithm matches object depths in lan-
guage and YOLOv8 matrix representations (see Algorithm 1). It
assigns depths to areas, considering indefinite adjectives as -1000,
as seen in the ’Book’ example.

sponding depths. Similarly, a vector haV will store non-
zero values of the i-th column in the YOLOv8 matrix and
aV their corresponding areas. Let the size of these vectors
be k = |hdV| and n = |haV|. To find an association, the
vector haV has to be split into k partitions. For the first
partition, let j be a vector index from [1, . . . , n − k], thus
creating two partitions. The second partition can be split
again, choosing from [j, . . . , n− k− 1], and so on until the
haV is split into k partitions, see Figure 2.

Given a set of k partitions P = [p1,p2, . . . ,pk], we
can sum up the elements of haV for a given partition. Let
the function sumObj(pi) be the function that sums such
elements for a partition pi:

sumObj(pi) =

|pi|∑
j=1

haV[pi[j]] (1)

Then, for i = 1, . . . , k, hdV[i] must be equal to
sumObj(pi); this means that the number of objects must
be the same, otherwise, the partition is invalid, except when
hdV[i] contains a −1000 value; if that is the case then the
comparison is overruled and the next partition is calculated.
For a valid partition, and assuming that the area is inversely
proportional to the depth, we assume that objects with simi-
lar depths must have similar areas. Therefore, the difference
between each area in the partition and the mean area of the
partition must be minimized. The score is defined as fol-
lows:

score(P) =

k∑
i=1

|pi|∑
j=1

(a− aV[pi[j]])
2 (2)
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where a is the mean area of the partition pi.
This partitioning method was implemented as a recursive

function that expands a tree of possible partitions, see Al-
gorithm 1. Note that pruning is possible if the number of
objects of partition i does not coincide with the number of
objects in hdV[i]; hence, the next partition will not be at-
tempted. For each valid partition, a vector pdV will store the
depths associated to each area according to the partition P.
The best partition will be the one with the minimum score.

4. Experimental Framework
Our experimental framework utilised an Alienware R5

laptop, featuring a Core i7 processor, 32GB RAM, and
NVIDIA GTX 1070 graphics card. We used the ASUS
PrimeSense Xtion Pro depth sensor, providing RGB and
depth images at 640×480 resolution and 30 Hz. The system
operated on Ubuntu 20.04.5 LTS with ROS Noetic, running
modules such as the spoken speech transcriber, YOLO, par-
titioning algorithm, and monocular SLAM system. We im-
plemented both Whisper and YOLO in ROS using Python
and PyTorch 1.9.0, configuring the visual SLAM system to
request 2000 features per frame.

We used two scenarios to evaluate the effect of the qual-
ity of depth provided in the spoken descriptions. The first
scenario, referred to as office, involved measuring objects
with a metric tape, following a perpendicular line from the
object to the camera plane. In the second scenario, the user
walked in a non-straight corridor reaching out an office and
then walking backwards to the origin; this scenario is re-
ferred as corridor. In this scenario, the depth information,
provided by the RGB-D camera, of objects detected with
YOLOv8 was visible to the user. The depth value corre-
sponds to the pixel value of the centroid of the bounding
box, used as an approximation only.

We compared the results of our approach with RGB-D
SLAM. Figure 3 displays top-down views of the camera tra-
jectories obtained with RGB-D SLAM against our method.
Table 1 summarises the performance of our approach com-
pared to RGB-D ORB-SLAM using RGB-D data. The
mean error shows that our method is comparable to when
using RGB-D images. Note that the trajectory length was
calculated based on the 3D trajectory obtained using RGB-
D images with RGB-D ORB-SLAM ; the percentage error
was 0.3% and 0.9%. This indicates that the depth informa-
tion provided by the user was sufficient to generate a high-
quality map, which was very close to the map generated us-
ing the Xtion depth camera, RGB-D ORB-SLAM operated
at a frequency of 30Hz.

5. Conclusions
We presented initial results of an approach using spo-

ken language and object detection from YOLO to produce

Figure 3. Top views of the map and camera trajectory performed
in two video sequences: First row, the office sequence. Second
row, the corridor sequences.

Table 1. Trajectory errors are compared w.r.t. to the trajectory
obtained with RGB-D ORB-SLAM using RGB-D images from
the Xtion camera.

Sequence # Images Trajectory
Length

[m]
Mean

Error [m]
Error

%
Office 12856 55.03 0.139 0.252
Corridor 8296 89.72 0.734 0.853

depth images for real-time monocular SLAM systems. Our
method allows users to assist in mapping where metric is
unavailable by providing simple depth descriptions. We
proposed a matrix representation and partitioning algorithm
for associating spoken descriptions with detected objects,
while maintaining camera pose estimation and mapping at
30 Hz. This could contribute to low-budget robotic systems
like miniature drones [13] where RGB-D or stereo cameras
aren’t available. Future work includes enhancing the asso-
ciation algorithm and exploring more visual and language-
based cues.
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