
Attention Semi-Siamese U-Net for quantification of biomarkers in tauopathies

Luis A. Campero-Garcia
Tecnologico de Monterrey
Monterrey, 64849, Mexico

a01019685@tec.mx

Jose A. Cantoral-Ceballos
Tecnologico de Monterrey
Monterrey, 64849, Mexico

joseantonio.cantoral@tec.mx

Miguel A. Ontiveros-Torres
Tecnologico de Monterrey
Monterrey, 64849, Mexico
miguelontiveros@tec.mx

Andres E. Gutierrez-Rodriguez
MAHLE Shared Services
Monterrey, 64650, Mexico

andres.eduardo.gutierrez@mahle.com

Abstract

Efforts to diagnose and predict neurodegenerative dis-
eases using imaging techniques have increased, particu-
larly for tauopathies, which contribute to rising morbid-
ity and mortality. Current approaches, however, do not fo-
cus on the molecular mechanisms causing tau protein’s ab-
normal behavior, leading to neurofibrillary tangles in hip-
pocampal and cortical regions. This work aims to develop
a novel quantification protocol for tauopathy biomarkers
based on pathological tau modifications. Utilizing a U-
Net-based neural network with attention modules, we ana-
lyze segmented masks to quantify combined fluorescent sig-
nals from molecular changes in neurofibrillary tangles. By
studying these tangles individually, we can detect uncon-
ventional interactions between biomarkers, providing valu-
able information for understanding dementia pathogenesis
and informing future computational analysis approaches.

1. Introduction
Alois Alzheimer first described the formation of neu-

rofibrillary tangles (NFTs), tau protein deposits in neu-
rons, and cholinergic neuron destruction in Alzheimer’s dis-
ease in 1906 [5]. The term ”tauopathies” was later coined
in the 1980s by Bernardino Ghetti and Michel Goedert,
referring to neurodegenerative disorders characterized by
tau polypeptide deposits in neurons, glial cells, and ex-
tracellular space [4]. In tauopathies, tau polypeptides un-
dergo abnormal post-translational modifications (PTMs),
such as hyperphosphorylation, proteolysis, and conforma-
tional changes. These alterations cause tau proteins to dis-
sociate from microtubules and polymerize into insoluble ag-
gregates called paired helical filaments (PHFs), which form
NFTs [1]. NFTs, primarily composed of tau, are hallmarks

of numerous diseases, prompting efforts to study their char-
acteristics for insights into tauopathy pathogenesis. As tau
deposits form 10-15 years before clinical symptoms appear,
advanced visualization methodologies are continuously de-
veloped and refined for potential diagnostic and monitoring
applications [10].

We propose a novel protocol for quantitative tauopathy
analysis in previously unused post-mortem brain tissue im-
munofluorescence images, obtained through a collaboration
between the National Dementia Biobank and Tecnologico
de Monterrey’s School of Engineering and Sciences. The
protocol incorporates a Semi-siamese U-Net-based neural
network model [8] with added attention modules for deep
learning (DL) image segmentation, enabling quantification
of tau protein expression in specific immunofluorescence
image regions.

2. Related work
The U-Net’s success in biomedical image segmentation

is demonstrated by the numerous models based on it, which
is further supported by the modularity and flexibility of neu-
ral networks and their training methods [15]. In this section
we present some of the models in the state of the art.

2.1. Semi-siamese U-Net

The Semi-siamese U-Net [8] was designed for process-
ing lung electrical tomographies, specifically for separat-
ing the central chest region containing the heart from the
surrounding lung area. This architecture features two dis-
tinct expanding paths following the contracting path, with
one path segmenting the lung region and the other target-
ing the heart region. Unlike typical segmentation models,
the Semi-siamese U-Net outputs a conductivity distribution
map for lung electrical tomographies instead of conven-
tional segmentation maps.



2.2. MultiResUnet

The MultiResUNet builds upon the original U-Net
model, replacing skip connections with custom Res Paths
[6]. The Res Path addition addresses medical image scale
variation, inspired by the inception-like architecture ex-
plored in [17]. Additionally, the authors identify a seman-
tic gap between the contracting and expanding paths’ same
levels. They argue that directly joining lower-level fea-
tures from the contracting path with expanding path fea-
tures could negatively impact the network’s performance.
Instead, they propose adding convolutional layers at each
level rather than concatenating directly via skip connec-
tions. The encoder’s feature map is fed to the Res Path
before the pooling layer, and the Res Path’s outputs are con-
catenated to the upsampled feature map from the level be-
low. This addition enables the MultiResUNet to outperform
the traditional U-Net in five test datasets, with four having
over a 1% IOU metric improvement and one exceeding a
10% increase. Moreover, the model demonstrates better
border delineation, enhanced outlier reliability, and supe-
rior performance in fewer epochs [6].

2.3. RCU-Net

Yu et al. build upon the MultiResUNet by adding a
custom block to the architecture for tumor segmentation
in breast ultrasound images. This new architecture, called
RCU-Net, incorporates a custom dense block at the U-Net’s
top level while also replacing direct skip connections with
Res Path blocks [19]. The dense block connects the network
input to the last upsampled features before the final convo-
lution set for segmentation. Additionally, the RCU-Net’s
Res Paths are slightly different from the MultiResUNet’s,
as they consist of fewer convolutions at each decreasing net-
work level. The dense block addition enables the RCU-Net
to outperform both the traditional U-Net and the U-Net with
Res Paths in tumor segmentation.

3. The attention semi-siamese U-Net
Our proposed architecture is based on the U-Net, pop-

ular for biomedical image segmentation due to its perfor-
mance with few labeled images [14]. The U-Net comprises
an encoder path and a decoder path, with skip connections
transferring feature maps between them. This design suits
our study, where effective segregation of affected regions
with limited training samples is the goal. The Semi-siamese
U-Net is particularly relevant, as it separates decoders for
specialized tasks. Building on this, our study employs the
Semi-siamese U-Net to simultaneously segment four im-
munofluorescence channel combinations in dementia im-
ages, with each combination managed by an individual de-
coder path. Additionally, we incorporate attention modules
in every upsampling step across all decoders to enhance per-

formance, we show improved performance from previous
efforts [2]. The proposed model is shown in Fig. 1.

Our network architecture features one encoder path and
four decoder paths for multi-task image segmentation. All
segmentation tasks share parameters in the contracting path.
The model takes a three-channel 256 × 256 pixel image as
input, outputting four one-channel 256 × 256 pixel masks.
Each encoder level has two convolutional layers, with fil-
ter counts of 16, 32, 64, 128, and 256 at each successive
level. Filters have a size of 5 × 5, with ”same” padding
and a stride of 1. A 0.2-rate dropout layer follows each
max-pooling to improve generalization. The decoder com-
prises upsampling steps with attention blocks. Upsampling
is performed in two stages. First, the previous level’s last
feature map is fed into the attention block as gating sig-
nal g, with the skip connection from that level input as xl.
Then, xl goes through a 2-stride 1 × 1 × 1 convolutional
layer, matching the gating signal’s dimensions. Meanwhile,
the gating signal enters its corresponding 1 × 1 × 1 con-
volutional layer. The second upsampling stage follows the
attention block output. The lower-level feature map is up-
sampled using nearest-type interpolation, and the attention
block output is concatenated. Two convolutional layers are
applied, with dropout layers (0.2 rate) following. Convolu-
tional layers use ReLU activation, except for the final output
layer, which uses sigmoid activation for segmentation with
a 1×1 convolution. The attention blocks improve segmenta-
tion accuracy for structures of varying sizes [9], crucial for
capturing immunofluorescence images with different opti-
cal zoom levels.

4. Experimental Framework and Results
In order to compare the performance of our model

against four state of the art models, we evaluated the ex-
perimental results using four metrics: true positive (TP),
false positive (FP), the Dice coefficient (DC) [3], and the
intersection over union (IOU, also known as the Jaccard in-
dex) [7]. These metrics are defined based on the ground
truth (GT) and the segmentation results (SR) obtained from
the forward pass of the evaluated method. We used 5-fold
cross-validation for our experiments. The 97 images were
randomly divided into 5 groups. In each group, 78 images
(80%) were used for training, while the remaining 19 im-
ages (20%) were used for validation. The training set in
each fold underwent the same transformations to further
augment the data. First, each image was randomly rotated
by 90, 180, or 270 degrees. Next, random elastic defor-
mations [16] were applied to both the original and rotated
images, resulting in a total of 312 training images after aug-
mentation. To enhance training and inference times, the im-
ages and masks were resized to 256 × 256 pixels using the
OpenCV Python library.

For each model, five sets of numerical weights were gen-



Figure 1. Proposed model of the extended semi-Siamese U-Net neural network. (a) The proposed model showing only one decoder.
Each box corresponds to a multi-channel feature map. The number of channels is denoted at the top of each box; the height and width
of each feature map are provided at the edge of each box and are the same in the encoder and the decoder. The encoder path on the left
consists of five levels (including the bottleneck at the bottom), each one consisting of two convolutional layers. The outputs of the encoder
are fed into attention blocks and its outputs are concatenated with the upsampled feature maps in the decoder before being passed through
two additional convolutional layers. Each of the four decoding paths gets its own copy of the encoder feature map corresponding to its
level. Attention blocks help the model to detect features of smaller size in the images. (b) The final model. Four parallel decoders are in
charge of segmenting different biomarker interactions.

erated. The testing images were input into each model, and
for each one, four segmentation masks were obtained. The
output images were used to calculate the metrics for the four
outputs. These measurements were then averaged to ob-
tain the final results per model using each set of weights.
Tab. 1 summarizes the mean and standard deviation of the
four metrics, along with the four outputs of the models.

Figure 2 displays the boxplots representing the perfor-
mance of each model across the four outputs. The pro-
posed model demonstrates a better average performance in
all metrics. Compared to the traditional U-Net, the DC, FP,
IOU, and TP of the proposed model improved by 3.33%,
3.86%, 5.47%, and 3%, respectively. Additionally, the pro-
posed model appears to be slightly more stable (i.e., has
a lower standard deviation) than the models incorporating
a residual path, which is often utilized to enhance stability

[15]. In Figure 3, we randomly selected a representative AD
image from the test set, with different regions highlighted
across each color channel combination, to demonstrate the
segmentation capabilities of each model on the desired re-
gions. Although the performance metrics across models
were similar, Figure 3 shows that the proposed model per-
forms better in including all the desired areas across all four
outputs in the segmentation while avoiding the undesired
ones, as specified by the ground truth labels.

5. Discussion

The detailed interpretation of immunofluorescence im-
age quantification is beyond the scope of this research.
However, our result show higher association of Red-Blue
channels (thiazine red and pS396 [13]). This indicates



Table 1. The mean and the standard deviation of the four metrics across the 4 outputs and the 5-fold cross-validation. The numbers after
the ± represent the standard deviation.

Model DC FP IOU TP

Attention Semi-
Siamese U-Net 0.9227 ± 0.0206 0.0363 ± 0.0222 0.8572 ± 0.0349 0.8918 ± 0.0283

Semi-Siamese U-Net 0.9064 ± 0.0223 0.0437 ± 0.0201 0.8268 ± 0.0402 0.8690 ± 0.0424
Inception U-Net 0.8938 ± 0.028 0.0638 ± 0.0252 0.8092 ± 0.0459 0.8593 ± 0.0408
RCU-Net 0.8984 ± 0.0233 0.0519 ± 0.0202 0.8164 ± 0.0385 0.8536 ± 0.0424
Res U-Net 0.893 ± 0.0335 0.0699 ± 0.0561 0.8083 ± 0.0535 0.8589 ± 0.0439
U-Net 0.8894 ± 0.0333 0.0749 ± 0.0443 0.8025 ± 0.0539 0.8618 ± 0.0396

Figure 2. Performance of the models in the four metrics. TP,
IOU, DC, and FP averaged across the four outputs using 5-fold
cross-validation. The x-axis represents the model name and the
y-axis the values of the metric. It can be seen that the pro-
posed model has a better average performance in all metrics ex-
cept the TP.

that phosphorylation at serine 396 matures into the poly-
meric fibrillar form with a value of 6.54%, signifying a
more advanced stage in fibrillar filament formation than
the biomarker for dual phosphorylation at serine 202 and
threonine 305 (AT8 antibody), which has a lower value of
3.96% [11]. These results align with experimental studies
demonstrating that tau polypeptide is highly phosphorylated
at serine 396 in advanced polymeric stages [12, 18]. This
emphasizes the significance of the quantification protocol
for understanding neurofibrillary tau polypeptide changes
in various tauopathies and brain regions. Quantification
would be based on patients’ unique fibrillar lesion struc-

Figure 3. Experimental segmentation results obtained with the
different neural network models. Each column represents the
outputs of the corresponding model and each row one combination
of channels. R: red; G: green; B: blue.

tures and include analysis of other biomarkers controlled
by fluorescence. Our proposed method can localize differ-
ent types of PTMs in NFT bodies and distinguish them from
other pathological events in the quadrant with an IOU of
0.8572. Prior to this, no automatic method existed for ob-
taining quantitative information on fluorescence images that
focused on specific biological events and biomarkers based
on unique fibrillar lesion structures. Manual segmentation
of four signals in a three-channel image typically takes 15
to 30 minutes, depending on the complexity of the biolog-
ical disease events in the image. In contrast, our method
takes just a few seconds to perform segmentation on a stan-
dard CPU. Furthermore, the segmentation obtained using
our deep learning model is not only faster and simpler but



also more reliable, as it is less susceptible to variability due
to differences in human raters’ criteria, subjectivity, or im-
age quality. The improved performance of our method is
mainly attributed to each upsampling path focusing on a sin-
gle task, rather than sharing weights during the upsampling
with other tasks, as seen in U-Net, Inception U-Net, Res
U-Net, and RCU-Net.
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