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Abstract

Land cover classification supports environmental protec-
tion, urban planning, and natural resource management ap-
plications. Remote sensing platforms acquire spectral im-
ages (SIs) with spectral data processed by specialized algo-
rithms. However, extensive data can pose computational
challenges when acquiring, transmitting, and processing
SIs. Compressive spectral imaging technique (CSI) reduces
the acquisition and transmission load by capturing com-
pressed versions of the SIs. Further, compressive covari-
ance sensing (CCS) can reduce the processing load by op-
erating over the covariance matrix estimated directly from
the compressed SI. This paper presents a land cover classifi-
cation scheme based on CCS, composed of a deep-learning
feature extractor and a support vector machine classifier.
The proposal is evaluated as a case study in Valle de San
José, Santander, Colombia, considering the interest of the
governmental institutions in monitoring the wide crop va-
riety in the region’s land cover. Experimental results show
the classification scheme effectiveness over a real scenario,
achieving a comparable performance of literature methods
using complete data but a reduced computational load.

1. Introduction
Land cover classification inventories record comprehen-

sive information on the materials that cover the surface of
the earth’s landmass [1]. A remote sensing platform builds
a land cover map using satellites to acquire spectral images
(SIs), providing a rich understanding of the surface features
useful for precisely classifying land cover types, such as
vegetation, soil, and urban structures [2].

Remote sensing platforms are computationally limited
when acquiring, transmitting, and processing vast SI data.
Hence, compressive spectral imaging (CSI) has emerged as
a mathematical tool that solves acquisition and transmission
data overload by acquiring a compressed version of the SI
while maintaining the essential spectral features [3]. After
the acquisition, CSI employs deep-learning or optimization-
based computational algorithms, taking advantage of SI

prior information such as sparsity, low-rank, or smooth-
ness to perform reconstruction [4], target detection [5], or
classification tasks [6]. Beyond that, the compressive co-
variance sensing technique (CCS) increases the processing
speed, estimating the covariance matrix (CM), directly from
the compressed measurements, and classifying using a low-
rank PCA-based approximation [7].

This paper proposes a land cover classification scheme
involving four components: (i) the compressed SI model-
ing, (ii) the SI fast low-rank approximation based on the
CCS technique (iii) the feature extractor learning, training
a deep-learning model with several SI publicly available
datasets, and (iv) the classification step, taking advantage
of the support vector machine to classify with a few in-situ
acquired samples. The proposed classification scheme is
evaluated as a case study at Valle de San José in Santander,
Colombia, considering the crop variety of the region and
ease of access to the rural areas. Specifically, a set of SIs ac-
quired with the Sentinel 2B satellite were employed for the
compressive acquisition simulation. Further, the computa-
tional simulations were performed using a fast reconstruc-
tion from the estimated CV. The experiments section ana-
lyzes the obtained accuracy when varying the compression
ratio, showing that the CCS-based classification performs
comparably to the classification using full data, while using
a lower computational load.

2. Area of Studio and Classes Definition

The studio was conducted in Valle de San Jose, San-
tander, Colombia, presenting a mountainous geography
characterized by the cultivation of coffee, sugar cane, and
cattle pastures, coffee being the most significant crop with
the highest presence. The selected region is centered on the
WGS84 geographic coordinates of 6o 590 1300 N, 73o 400
6200 W, whose referenced image was acquired on Septem-
ber 10, 2022, using the Sentinel-2 VNIR sensor [8]. For
the study, we selected a subregion of 440 × 680 spatial pix-
els and 10 spectral channels covering the 490 nm to 2190
nm spectral range. Originally, the spatial resolution is of



10m for the 2,3,4 and 8 spectral channels; and 20m for the
5,6,7,11, and 12 spectral channels. The spatial resolution
was adjusted at 10m for all channels by sub-sampling the
latter channels.

2.1. Definition of the Classes

The identification of the predominant classes was car-
ried out by a visit in-situ in the area of studio, analyzing the
ground truth of the vegetation at some specific locations to
create a land-cover inventory. The region contains a large
agricultural area, mostly corresponding to coffee crops, fol-
lowed by sugar cane, cocoa, and pastures. Hence, we de-
fine the following five classes: (i) Coffee crops and trees
class. (ii) Agricultural vegetation class, excluding coffee.
(iii) Bare soil class. (iv) Urban areas class. (v) Water class.

Figure 1 shows the selected classes, geo-referenced with
control points taken with a sub-meter GPS and photographs
to identify the pixels in the Sentinel-2b SI. Through this
visit, around 500 pixels per class were identified in the satel-
lite image using the captured GPS points on-site.

Figure 2 shows the location of pixels whose spectral sig-
natures were extracted for the training and testing process
for each defined class. Note the high similarities between
the spectral response of the defined classes, indicating that
the classification of such image is a challenging task.

Figure 1. Some classes selected at Valle de San José.
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Figure 2. Average spectral response of the five defined classes. (a)
Location of the area where the pixels can be found. (b) Coffee
crop, P1. (c) Agricultural vegetation without coffee, P2. (d) Bare
soil, P3. (e) Urban areas, P4., and (f ) River, P5.

3. Proposed Classification Method
The proposed semi-supervised land cover classification

scheme based on compressive covariance sensing ( CCS)
involves four components: (i) The SI compressive acqui-
sition. (ii) The SI low-rank approximation based on CCS.
(iii) The learning of a feature extractor with a convolutional
neural network (CNN) model. And (iv) a support vector
machine (SVM) classifier.

3.1. Compressive Spectral Imaging

Let F ∈ Rl×n, denote the matrix form of a SI with l
spectral bands and n spatial pixels. The acquisition of a
compressed version Y ∈ Rm×n, with m ≪ n can be mod-
elled by the following CSI forward model

Y = PTF+N, (1)

where P ∈ Rl×m denotes a random projection matrix, and
N ∈ Rm×n models acquisition noise [7, 9].

3.2. Compressive Covariance Sensing Recovery

Given the compressed SI, CCS recovers the complete SI
based on the CM, reducing the computational load of tradi-
tional CSI reconstruction algorithms. Nonetheless, in most
cases the CM S is unknown and must be estimated from
Y. Therefore, this work is based on the fast CM estima-
tion approach presented in [7, 9], which demonstrated that
splitting the signal F into p disjoint subsets Fi ∈ Rl×n/p

and projecting them onto different subspaces Pi ∈ Rl×m

allows to accurately estimate the CM S from compressed
measurements by solving the optimization problem

S∗ = argmin
S∈D

p∑
i=1

||S̃i −PT
i SPi||2F + τψ(S), (2)

where D is the set of positive semi-definite matrices, ψ pro-
motes a low-rank structure, and τ is a weighting parameter.

After estimating the CM S, a low-rank approximation of
the SI is computed as follows

F̃ = (PTW)†Y, (3)

where F̃ ∈ Rk×n denotes the SI low-rank approximation
with the first k PCA coefficients, and W is a matrix con-
taining the first k eigenvectors of S [10].

Figure 3. Schematic representation of the semi-supervised patch-
based classification approach from compressed measurements.



3.3. Feature Extractor Learning using a Convolu-
tional Neural Network

A classification CNN usually compresses the input into
a latent space before applying a dense layer with a softmax
to assign a class. The learned latent space can act as a fea-
ture extractor useful to fine-tune the model for a specific
task [11, 12].

The proposed scheme learns the latent space using a
patch-based classification approach, which extracts and la-
bels spatial patches of the image, promoting spatial priors
and smooth classifications [13]. The used CNN architecture
consists of two convolutional layers and two dense layers,
a simple architecture for fast and accurate SI classification
with few trainable parameters. The input of the CNN cor-
responds to the first PCA coefficients of each patch, given
the low-rank approximation estimated in the previous com-
ponent, reducing the computational complexity.

3.4. Support Vector Machine Classifier

The fine-tuning removes the last layer of the CNN model
used to learn the feature extractor and trains the model with
new classes and data, taking advantage of the SVM gener-
alization capabilities when dealing with a few samples [14].
Additionally, the computational complexity is also reduced
since only the SVM needs to be trained using the latent pro-
jection of the signal generated by the CNN model.

Let gθ : Rl −→ Rs be a CNN model whose last layer has
been removed, and (fi, yi) a labeled pair of data for training.
The optimization problem for the SVM is given by

min
u,b

1

2
∥u∥2 + C

N∑
i=1

max(1− yi(u
T gθ(fi) + b), 0)2, (4)

where u contains the normal vectors to the hyperplane sep-
arating the classes [14].

Figure 3 illustrates the proposed semi-supervised land-
cover classification using CCS. In a), the input is the com-
pressed SI Y in (1). In b), the CM is estimated by solv-
ing (2), and a low-rank approximation of the SI is obtained
using the matrix W with the first k eigenvectors of S∗, fol-
lowing (3). In c), a patch-based classification CNN is used
to learn a latent space used as the feature extractor, where
the CNN architecture consists of two convolutional layers
and two dense layers, trained with literature SI datasets cov-
ering various classes. Finally, in d), an SVM replaces the
last layer of the CNN to fine-tune the classification task
over the few samples acquired at Valle de San José using
the training process according to the solution of (4).

4. RESULTS AND DISCUSSION
The experiments use four SI datasets. The Indian Pines,

acquired by the AVIRIS sensor from the Northwestern In-
dian Pines test site in June 1992 with 145 × 145 spatial

pixels and 200 spectral bands [15]. The Pavia University
and Pavia Center, acquired by the ROSIS sensor over Pavia,
Northern Italy with 610×340 spatial pixels and 103 spectral
bands [16]. And Salinas, acquired by the 224-band AVIRIS
sensor over Salinas Valley with 512×217 spatial pixels [16].

Metrics: average accuracy (AA) computing the aver-
age accuracy for each class useful to evaluate unbalanced
datasets; the overall accuracy (OA) measuring the correct
number of pixels across the classes; the F1 score computed
as a ratio between precision and recall, (the F1 score is com-
puted as the average of the F1 for each class); and, kappa
statistics considering that assigning labels randomly has a
certain degree of accuracy, making this metric a robust way
to measure classification performance [17].

4.1. Feature Extractor Training

The training process to learn the feature extractor uses
three of the four datasets, addressing a completely super-
vised training (University of Pavia, Salinas, Indian Pines).
The model is trained progressively using each dataset, ap-
plying a PCA, and adjusting the model with the corre-
sponding classes. Specifically, 1) Apply PCA to obtain a
dimensionality-reduced version using six components. 2)
Adjust the dense layer to match the number of classes in the
dataset. 3) Run 1000 iterations to retrain the feature extrac-
tor with the current classes. The process is repeated until
the model converges, no matter which image is used.

4.2. Classification with Pavia Center dataset

The remaining dataset (Pavia Center) is used for semi-
supervised training using the SVM as the classification
layer keeping the CNN model weights fixed, used as the
feature extractor. For the training, 100 pixels of each class
were used to fine-tune the CNN model and to train the SVM
classifier in the experiments. This experiment tests two sce-
narios, using full data with no compression other than the
PCA dimensionality reduction and applying a random com-
pression on the data using the CCS approach as described
in Section 3 acquiring only 10% of the data.

Table 1 shows the results for different scenarios labeled
as follows: using full data and the CNN model with a dense
layer and a Sigmoid activation as a classifier (CNN-full);
using full data and the CNN model with the SVM as a
classifier (SVM-full); using compressed data and the CNN
model with a dense layer and a Sigmoid activation as a clas-
sifier (CNN-CCS); and using compressed data and the CNN
model with the SVM as a classifier (SVM-CCS).

There, it can be seen that the classification performance
when using compressed versions of the dataset achieves
comparable results in terms of classification accuracy with
those obtained using full data. Furthermore, using the SVM
achieves comparable or even improves the Kappa metric
and F1 score, indicating that the SVM approach provides



a better classification agreement and balance between the
recall and precision metrics.

Figure 4 shows a visual comparison between the four
evaluated scenarios. It can be seen that the results of the
compressed datasets are comparable to those obtained us-
ing full data, especially when the SVM classifier is used
as visualized in the boxed region where the CNN scenario
presents artifacts.

4.3. Experiments with Valle de San José data

The Valle de San José data was compressed following
equation (1) using 60% of the information. The classifica-
tion results are compared against the results obtained using
full data. Figure 5 illustrates the obtained classifications
over the real data, where using the compressed measure-
ments achieves comparable results with those obtained with
full data. Since no ground truth is available, we present
a qualitative analysis of the predicted classes. Based on
the knowledge of the zone and the visit in situ, we ob-
served a high correlation with the expected distribution of

Model AA(%) OA(%) Kappa F1 score
CNN-Full 98.6± 0.2 93.8± 0.8 91.5± 1 87.0± 1.3
SVM- Full 98.6± 0.2 93.8± 0.9 91.5± 1.3 86.7± 1.8
CNN-CCS 98.5± 0.4 93.3± 1.8 90.6± 2.5 85.2± 2.4
SVM-CCS 98.6± 0.1 93.8± 0.8 91.3± 1.1 85.8± 1.1

Table 1. Classification quantitative results Pavia Center Image.
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Figure 4. Visual comparison of the classification results. Note that
the black regions are unlabeled zones hence, it was masked out in
the results for interpretability
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Figure 5. Visual comparison of the results obtained using the data
from valle de san josé

the classes. The (A) region in figure 5 corresponds to the
location of the town which is correctly predicted. Region
B corresponds to bare soil, it is interesting that using the
compressed measurements the algorithm was able to pre-
dict it correctly meanwhile, using full data misclassified it.
Finally, region C was predicted as water in both compressed
measurements, but there is no water in that zone. Overall,
the use of an SVM with compressed data exhibits a better
performance than using only a CNN model.

5. Conclusions

A land cover classification scheme based on CCS was
presented. The scheme was developed to be used in a case
study over a region in Vallé de San José, Santander, Colom-
bia. For this, we carried out a visit in-situ to the region,
analyzing the vegetation present at different locations and
defining the predominant classes to build a land cover in-
ventory. The developed classification scheme involves a
deep-learning feature extractor and a support vector ma-
chine classifier, considering the few observed samples of
the different classes of interest in the real study case. We
conducted experiments over different configurations, show-
ing the effectiveness of the proposed classification scheme
to discriminate the predominant classes, achieving a com-
parable performance of literature methods using complete
data at a reduced computational load.
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