Less is More: Techniques to Reduce Overfitting in your Transformer Model for Sign Language Recognition

Joe Huamani-malca
PUCP
Lima, Peru
huamani.jn@pucp.edu.pe

Gissella Bejarano
Marist College University
New York, USA
gissella.bejarano@marist.edu

Abstract

Sign language recognition (SLR) in deep learning is a challenging task due to the need for interpreting human body movements, including detailed hand movements and facial expressions. Recent research has focused on using keypoint body landmarks and transformer models to improve SLR performance. However, these models can face overfitting issues due to the need for more available datasets. To address these problems, we analyze three Peruvian sign language (LSP) datasets for SLR. Additionally, we apply several techniques to reduce overfitting in the Spoter model, a transformer-based architecture for SLR. The results of these techniques reveal that the data-based techniques improve generalization and reduce overfitting in transformer-based models for SLR.

1. Introduction

Sign language is an important form of communication for the deaf community. Machine learning technology has advanced the ability to communicate through text, voice, and images, but sign language recognition is still a challenge. This is due to the need to capture and interpret facial expressions and detailed hand movements, as well as the vast vocabulary and variation of signs [10, 15]. Recent research has leveraged human action recognition (HAR) technology to develop sign language recognition systems [20].

Recent SLR research has focused on body keypoint landmarks [1, 14, 23] to reduce computational requirements, but this requires a pre-trained body keypoint estimator. On the other side, transformer models and their variations are gaining popularity due to their successful performance in tasks like HAR [16, 18, 22] also used and SLR [4, 7, 27, 31]. Nevertheless, overfitting and limited datasets remain challenges for transformer models in SLR. Hence, it is crucial to address these issues and enhance model generalization. Our work contributes by analyzing three PSL datasets for sign language recognition and unifying them into a comprehensive dataset. Additionally, we enhance Spoter model metrics by addressing overfitting with several techniques.

2. Related work

This section overviews the state-of-the-art sign language recognition (SLR) models. Prominent models include Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), and Transformers [2, 4, 6, 19, 29]. Other recent works have explored the use of attention mechanisms, multi-modal fusion, and transfer learning for improving the performance of SLR models [8, 11, 12, 24].

Deep learning models often face the challenge of overfitting during training. Several techniques can mitigate this issue, such as regularization, early stopping, learning rate variation, label smoothing, dropout, weight decay, and batch normalization [5, 17, 21, 28]. Data-related techniques, such as outlier removal, handling missing values, data augmentation, noise reduction, and data smoothing [9, 13, 26, 30], can also be applied. Combining these techniques can improve the generalization performance of deep learning models for SLR tasks.

3. Data Analysis

This section explains the data analysis we performed to clean, preprocess and prepare the data for the SLR model.

3.1. Datasets

We utilize three distinct datasets: AEC, PUCP-DGI156, and PUCP-DGI305. Each comprises a unique set of classes, with more than 50% classes overlapping between datasets.

AEC: This dataset is created from two 30-minute videos of the Educational Peruvian TV show called "Aprendo en casa" (Learning at home). Two different interpreters appear in the dataset. The video frames of 29.9 fps were cropped 220x220 pixel that focus on the interpreter’s small corner square, and the signs were segmented based on the spoken words in the program [2].
PUCP-DGI156: This dataset comprises 27 videos of 29.9 fps in which 19 deaf Peruvian signers tell stories. These videos were recorded in various settings, including classrooms. The recordings in this dataset have not been standardized, so some have a noisy background, different signers’ camera-distance, and some show zoom-in and zoom-out effects. This dataset is annotated and reviewed by the same annotator.

PUCP-DGI-305: this dataset has 1920x1080 resolution videos of deaf Peruvian signers making sentences in 29.9 fps. The videos in this dataset are standardized, meaning they have a white background and were recorded using the same camera distance. An LSP native annotated this dataset; then it has reviewed by a deaf and followed by a linguistic master student who knows LSP. Finally, a linguistic expert standardized the labels used in the dataset. This dataset is still growing and not publicly available to date.

The combinations of these three LSP datasets for more than 22 instances per class allow us to use 50 classes and a stratified split of 80% for training and 20% for validation has been applied. The distributions of instances per class are shown in Figure 1. The training distribution of the multi-dataset comprises approximately 28.42% from the AEC dataset, 51.05% from the PUCP-DGI156 dataset, and 20.58% from the PUCP-DGI305 dataset.

4. **Spoter model**

The SPOTER model is a transformer-based architecture for SLR from a sequence of keypoint landmarks data. Similarly, as presented in [3]. It has 6 encoder and decoder layers, 9 heads, 2048 feed-forward dimensions, and 108 hidden dimensions. The input is transformed into one dimension feature vector before feed the model. The architecture includes a customized transformer decoder layer that omits the repeated self-attentional operation found in the standard implementation. The model employs a linear layer at the end to make class predictions. The model uses the Adam optimizer and the cross-entropy loss function. The main goal of the Spoter model authors is to create a pre-trained model that is lightweight and can learn quickly.

5. **Reduce overfitting - Data**

In this section, we will describe the techniques applied to the data to reduce overfitting and their respective results.

5.1. **Cross Validation**

To evaluate the performance of our model and identify any potential issues with the dataset, we employed a stratified k-fold cross-validation method: the dataset was divided into five parts, with similar proportions of instances per class in each split. For each experiment, we took a different fold as validation split.

The model performed well across all folds, as shown in Figure 2, with a validation accuracy of 51% (Table 1). However, the validation loss started to increase while train accuracy approaches 100%, suggesting overfitting. Our analysis showed that this overfitting was not due to any particular fold.

5.2. **Data cleaning**

This is a critical step in the machine learning pipeline that is often overlooked but can have a significant impact on the performance of the model. While it is not a technique for reducing overfitting, it is an essential step that must be taken to ensure that the model is training correctly. This can include removing duplicates, correcting misspellings, and removing outliers.

In our case, we checked miss-annotated videos with an LSP expert. Some videos were out of phase and did not

1. https://github.com/gissemari/PeruvianSignLanguage

2. https://github.com/JoeNatan30/ConnectingPoints
Figure 2. Training and validation metrics for five experiments, each corresponding to a cross-validation fold. Top-left: training accuracy. Top-right: training loss. Bottom-left: validation loss. Bottom-right: validation accuracy.

represent the sign. We also removed videos with less than 3 frames. This resulted in a different distribution of instances in the dataset. With the AEC dataset seeing a reduction of 17.42% and the PUCP-DGI156 dataset seeing a reduction of 3.73%. Despite these reductions, the accuracy improved from 51% to 55% (Table 1). However, the validation loss remained similar to that of the bottom-left plot shown in Figure 2, indicating that further improvements may be necessary.

5.3. Reduce the dataset

Analyzing datasets from different sources can be challenging due to imbalanced classes and quality variations. To address these issues, we analyzed each dataset separately to determine which ones contribute to a robust model.

After testing each dataset using the spotter model, we found that the PUCP-DGI156 dataset had an accuracy of 25%, which is lower than the result obtained from AEC and PUCP-DGI305, which is 60% and 61% respectively. Additionally, the PUCP-DGI156 dataset showed unusual loss behavior, with losses increasing faster than the other datasets, for example AEC dataset, as seen in Figure 3.

Figure 3. Comparison of validation loss between the AEC and PUCP-DGI156 datasets. The validation loss of AEC is on the left, and the validation loss of PUCP-DGI156 is on the right.

We removed the PUCP-DGI156 dataset and combined the remaining datasets. This resulted in a new dataset of 50 classes, as shown in Figure 4, with 61.64% of AEC and the rest of PUCP-DGI305. Testing the new dataset generated an improvement in accuracy from 55% to 68% (Table 1).

Figure 4. distribution of the number of instance per classes of the train (top) and the validation (bottom) of the mix of AEC and PUCP-DGI305, all classes have more than 9 instances.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-validation</td>
<td>50.93 %</td>
</tr>
<tr>
<td>Data-cleaning</td>
<td>55.07 %</td>
</tr>
<tr>
<td>Reduce dataset</td>
<td>68.21 %</td>
</tr>
<tr>
<td>Data Augmentation</td>
<td>68.93 %</td>
</tr>
</tbody>
</table>

Table 1. Cumulative Accuracy of Data-Oriented Techniques for Overfitting Reduction.

5.4. Data augmentation (AUG)

We used the data augmentation techniques proposed by [3] to increase the diversity of the training samples and improve the robustness of the trained model. We randomly applied each technique to each training instance with a probability of 50%.

Rotation: Rotates the image around its center by a random angle within a specified range. This technique helps the model learn to recognize signs at different orientations.

Shear squeeze: Deforms the image along the x and y axes by helping the model learn to recognize signs whose signers are tall or wide.

Shear perspective: Simulates a 3D perspective distortion in 2D images, and help the model learn to recognize signs from different viewpoints.
Joint rotation: Variates the angle between two consecutive joints. This helps the model learn to recognize different arms movements.

The data augmentation experiments show a small increment in accuracy while maintaining similar loss metrics. This could be due to the limited range of variation values used.

6. Reduce overfitting - Training process

After applying overfitting reduction techniques to the data, this section will explore the effect of applying overfitting reduction techniques to the training process.

6.1. Class weighting (CW)

Class weighting is a technique used to assign different importance to each class during training. In our experiment, we used the inverse of the proportion of each class to determine the weight of each class.

\[
\text{ClassWeight}(r) = \frac{1}{\text{N}_{\text{class}}(r)}
\]

6.2. Model complexity reduction (MCR)

One of the techniques used to deal with overfitting is to reduce the number of trainable parameters of the model. In our experiments, we reduced the number of trainable parameters in the model by reducing the feedforward dimension from 4096 to 256. This resulted in a 58.25% reduction in trainable parameters.

6.3. Label smoothing (LS)

Label smoothing is a regularization technique that reduces overfitting by making the model less confident in its predictions. It does this by adding a small amount of noise to the one-hot encoding for the labels [25]. This diffuse way of learning makes the model less likely to memorize the training data too closely, which can improve its ability to generalize to new data.

7. Results

The experiments in this section were done after reducing the dataset. We experimented with no techniques (baseline), and then with one technique at a time. We also experimented with grouping some techniques to see the impact on loss and accuracy. Figure 5 shows that the train and validation loss behavior is similar for most techniques. However, for the two experiments where label smoothing was applied, the training loss plateaus instead of increasing, while the validation loss continues to decrease.

The Table 2 shows that combining techniques can improve accuracy by 1%. Using class weight and reducing model complexity both lead to lower train loss, and this effect keeps their behaviour when both techniques are used together. Although label smoothing shows a lower value compared to the others, we consider that this value may change with more epochs.

![Figure 5. Comparison between the training and validation loss of the baseline and of each of the techniques](image)

Table 2. Top-1 accuracy of Baseline (after reduce the dataset) and the use and combination of each reduce overfitting technique

<table>
<thead>
<tr>
<th>Technique</th>
<th>Train loss</th>
<th>Val loss</th>
<th>Acc (top1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.025</td>
<td>1.806</td>
<td>68.21 %</td>
</tr>
<tr>
<td>CW</td>
<td>0.006</td>
<td>1.802</td>
<td>68.93 %</td>
</tr>
<tr>
<td>AUG</td>
<td>0.025</td>
<td>1.868</td>
<td>68.93 %</td>
</tr>
<tr>
<td>MCR</td>
<td>0.007</td>
<td>1.768</td>
<td>68.21 %</td>
</tr>
<tr>
<td>LS</td>
<td>0.749</td>
<td>1.940</td>
<td>67.50 %</td>
</tr>
<tr>
<td>MCR,CW</td>
<td>0.014</td>
<td>1.807</td>
<td>67.86 %</td>
</tr>
<tr>
<td>MCR,CW,AUG</td>
<td>0.072</td>
<td>1.617</td>
<td>69.29 %</td>
</tr>
<tr>
<td>all</td>
<td>1.606</td>
<td>2.615</td>
<td>69.29 %</td>
</tr>
</tbody>
</table>

8. Conclusion

In conclusion, SLR is an important research topic, especially for improving communication with the deaf community. Recent advancements in SLR technology have shown promising results, but the limited availability of training datasets remains a challenge.

This paper details three dataset for isolated sign recognition, does an analysis of combining these dataset, and proposes data-oriented and model-oriented techniques for reducing overfitting in the Spoter model. Experiments show that data-oriented techniques are more effective than model-oriented techniques.

Although model-oriented techniques have less impact, they can be beneficial as the size of the dataset grows. We also have to mention that these experiments did not consider larger epoch numbers, so it is possible that some techniques, such as label smoothing, could have better results due to the way they modify the loss behavior.

We hope that this research will be useful to researchers looking to optimize their SLR transformer models. By improving the accuracy and efficiency of SLR models, we can
contribute to the accessibility of the deaf community and make it easier for deaf people to communicate with others.

References

