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Abstract

Due to the vulnerability of deep neural networks to ad-
versarial attacks, adversarial robustness has grown to be
a crucial problem in deep learning. Recent research has
demonstrated that even small perturbations to the input
data can have a large impact on the model’s output, expos-
ing them susceptible to malicious attacks. In this work, we
propose Delta Data Augmentation (DDA), a data augmen-
tation method for enhancing transfer robustness by sam-
pling extracted perturbations from trained models against
adversarial attacks. The main idea of our work is to gen-
erate adversarial perturbations and to apply them to down-
stream datasets in a data augmentation fashion. Here we
demonstrate, through extensive experimentation the advan-
tages of our data augmentation method over the current
State-of-the-Art in Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD) attacks for CIFAR10
dataset.

1. Introduction

The research in the field of adversarial robustness for
deep learning aims to increase the robustness of models to
adversarial attacks [3, 4, 11]. These attacks are deliberate
attempts to trick a model by purposefully introducing un-
detectable perturbations to the input data, leading the algo-
rithm to misclassify or make inaccurate predictions [1, 9].
Applications like autonomous vehicles [38], medical diag-
nosis [2, 36], and fraud detection [8] are all susceptible to
adversarial attacks, which can have major repercussions.
Thus, it has become crucial to conduct research on increas-
ing the adversarial robustness of deep learning models in
order to make such systems safe and useful in real settings.

The recent literature has seen a surging interest in this
field, resulting in a large number of techniques to improve
the robustness of deep learning models to adversarial at-
tacks, such as adversarial training [3, 15, 35], and data aug-

Figure 1. Overview of Delta Data Augmentation (DDA). A
method for data augmentation through sampling adversarial per-
turbations δ from upstream trained models to downstream tasks.

mentation [12, 13]. For example, to enhance the model’s
capacity to recognize and fend off hostile attacks, adver-
sarial training entails supplementing the training data with
adversarial samples. Conversely, data augmentation creates
new data from existing data in order to expand the size of
a dataset [28, 33]. This leads to an overall improvement in
the robustness of the model by exposing it to a wider range
of variations.

Our proposal, Delta Data Augmentation (DDA) (Fig. 1)
solves the crucial problem of transfer robustness in deep
learning. When there is a lack of labeled data, our transfer
robustness approach only requires training a model on one
dataset and then applying the obtained knowledge to an-
other dataset. By incorporating perturbations sampled from
trained models that are resistant to adversarial attacks, DDA
is designed to improve transfer robustness. Given its de-
sign, our approach is able to incorporate samples that have
been generated by the addition of perturbations of previ-
ous datasets. Leading to more diverse training examples
that can better reflect the heterogeneity of the target dataset.
Compared to other approaches in the literature, DDA does
not require additional labeled data or knowledge of the tar-
get dataset. Instead, it makes use of the robust model’s ac-
quired knowledge to produce perturbations that are perti-
nent to the target domain.



The rest of the paper is organized as follows: In Sec-
tion 2, we describe the related work on the adversarial ro-
bustness problem. In Section 3, we describe the proposed
method. We first explain the adversarial training procedure
and then explain the generation of adversarial perturbations
for transfer robustness. Next, we discuss the design choices
we made for DDA for sampling adversarial perturbations.
In Section 4, we detail the experimental setup used for im-
plementing the models. In Section 5, we discuss the per-
formance obtained by using DDA. Finally, in Section 6, we
present our conclusions and discuss future work.

2. Related Work and Motivation
Due to deep neural network’s susceptibility to adversar-

ial attacks, adversarial robustness has grown to be a cru-
cial research area in deep learning (DL) [1, 6, 10, 15]. It has
been demonstrated that DL models are susceptible to adver-
sarial instances, which are intentionally constructed inputs
that can lead the model to produce wrong predictions [21].

Although several proposals for mitigating adversarial
risks for DL models have been investigated [18, 20], there
is still a need for enhanced robustness in many settings. Re-
cently, research on adversarial robustness has focused on
creating adversarial attacks to fool a model [15]. These at-
tacks can be classified as white-box or black-box attacks.
In the former, the attacker has full knowledge of the model
weights and architecture and can generate adversarial ex-
amples by optimizing a certain loss function. In the lat-
ter, the attacker has limited knowledge about the model and
can only create adversarial examples by feeding the network
with inputs and analyzing the outputs.

Similarly, adversarial defense methods have been pro-
posed in recent years [7, 9]. Defense methods can be
mainly classified into two categories: pre-processing de-
fense, which aims to modify input data before feeding the
model. Popular techniques under this category include data
augmentation [12, 13] and input denoising [25]. The cate-
gory, known as post-processing defenses, involves treating
the output of a model. Examples of these techniques include
adversarial training [15, 21], defensive distillation [26], and
model ensembles [37]. However, none of these can guaran-
tee full coverage in terms of security and robustness against
all adversarial inputs. Thus, robust adversarial defenses are
still a high-demanding and high-priority requirement for de-
signing trustable ML solutions.

Additionally, the accuracy under adversarial attacks is
the most commonly used metric to evaluate the robustness
of a model [21]. This metric determines the percentage
of correctly classified examples under a particular attack.
Similarly, the robustness radius is a metric that measures
the maximum magnitude of adversarial perturbation that a
model can withstand [11]. Moreover, minimum distortion
is a metric that assesses the minimum magnitude of adver-

sarial perturbation needed to fool a model [5].
The security and dependability of deep learning systems

are seriously threatened by adversarial robustness in critical
applications. Many defense mechanisms have improved the
robustness of models, but considerable work still needs to
be done before these models can tolerate various adversar-
ial attacks and still keep their natural accuracy. Therefore,
reducing this gap between accuracy and robustness is still a
research problem [17, 29, 34].

The main contribution of this work is the data augmenta-
tion method based on adversarial attacks and transfer learn-
ing to enhance model robustness. DDA is designed by using
adversarial perturbations that are effective on a larger and
more complex task to transfer them to downstream tasks.

3. Methodology
In deep learning, the term adversarial robustness de-

scribes a model’s capacity to continue operating effectively
even in the minimum engineered changes to the input data
intended to trick the model [6]. Let X be the set of possible
input data, and let Y be the set of possible output labels.
A supervised learning model can be represented as a func-
tion f : X → Y that maps input data to output labels.
Adversarial examples can be generated by adding a small
perturbation δ to the input data x, such that x′ = x + δ.
The perturbation is typically constrained to have a small ℓp-
norm, where p is a positive integer (e.g., p = 2 corresponds
to the Euclidean distance).

The utilization of adversarial examples as a means of
data augmentation during the training phase constitutes a
technique referred to as Adversarial Training. This tech-
nique aims to enhance the robustness of deep learning mod-
els against adversarial examples.

3.1. Adversarial Training

Let x ∈ X be an input data vector, and y ∈ Y be its
corresponding label. The loss function is typically defined
as the cross-entropy loss between the predicted output of
the model and the true label (Eq. 1).

L(fθ(x), y) = −
|Y |∑
i=1

yi log fθ(x)i, (1)

where fθ(x)i is the i-th output of the model for input x.

To generate an adversarial perturbation δ for input x, the
first step is to compute the δ that maximizes the loss func-
tion (Eq. 2), subject to a constraint on the ℓp-norm of the
perturbation, such that |δ|p ≤ ϵ. In adversarial attacks, ϵ is
a parameter used to define a constraint on the magnitude of
the perturbation that can be applied to the input data x.

δ = argmax
δ′

L(fθ(x+ δ′), y), s.t.|δ|p ≤ ϵ (2)
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Figure 2. Accuracy comparison for PGD with L2 (2a) and L∞ (2c), and FGSM with L2 (2b) and L∞ (2d), for CIFAR-10 dataset with
different methods of data augmentation: Delta Data Augmentation (ours), RandAugment [13], AutoAugment [12], Standard Training with
no data augmentation. An epsilon of 0 means natural accuracy.

One approach to generating adversarial examples is to
use an iterative optimization algorithm such as Fast Gra-
dient Descent Method (FGSM) [15] or Projected Gradient
Descent (PGD) [21] to compute a perturbation. The result-
ing adversarial example x + δ is then added to the original
training data along with its corresponding label y, creating
an augmented training dataset. Then, the empirical risk over
the augmented training data is used as the final objective
function for adversarial training, as shown in Equation 3.

min
θ

1

n+m

n∑
i=1

L(fθ(xi), yi)+

1

n+m

m∑
i=1

L(fθ(xi + δi), yi),

(3)

where n is the size of the original training data, m is the size
of the augmented training data, and (xi, yi) and (xi+δi, yi)
are pairs of original and adversarial training examples, re-
spectively.

3.2. Delta Data Augmentation (DDA)

Transfer Learning (TL) is a technique used in deep learn-
ing to transfer knowledge learned from one model to an-
other [34]. In TL, a pre-trained model is used as a starting
point for a new model rather than beginning from scratch
[17]. For this, gϕ : X ′ → Y ′ is a pre-trained model param-
eterized by ϕ, where X ′ and Y ′ may or may not be the same
as X and Y . The goal of transfer learning is to initialize
the parameters of fθ using the pre-trained parameters ϕ and
then fine-tune fθ using a small amount of data from the new
task [32]. Then, transfer robustness of gϕ is defined as the
ability of fθ to maintain its performance on a new task un-
der adversarial attacks when initialized with the pre-trained
parameters ϕ [24,32]. Now, instead of using pre-trained pa-
rameters, we look for transfer adversarial perturbations that
are effective on a larger and more complex model.

In accordance with this notion, a model may enhance its
performance by incorporating a greater variety of data into
the training phase [28]. The augmentation of training data
via adversarial examples can result in an improvement in
model generalization. Nevertheless, adversarial training is
a computationally demanding and time-consuming under-
taking. One approach to address the challenges of adver-
sarial training is the use of universal adversarial perturba-
tions [10, 22]. These perturbations can be generated once
and applied to any image, which makes the process more
efficient compared to generating adversarial examples for
each image individually. Incorporating such perturbations
into the training data can enhance model robustness and im-
prove its generalization performance [28]. However, gener-
ating these perturbations can also be a computationally de-
manding task.

Figure 3. Example of DDA for CIFAR10. First, is the original
image, then, in the second image is the perturbation extracted by
DDA. Finally, the third image is the augmented image.

Instead of attacking a model to create a set of adversar-
ial examples, we propose to gather adversarial perturbations
by attacking upstream model tasks (e.g. ImageNet [14]).
This approach will yield sample adversarial noise that is ef-
fective across other models. We aim to collect adversarial
noise δ and apply it to downstream tasks in a data augmen-
tation fashion. We call this method Delta Data Augmenta-
tion (DDA) (Fig. 1). In DDA, a pre-trained model that is
trained on an upstream task, such as ImageNet Classifica-
tion, is used to sample adversarial perturbations δ given an
adversarial attack (Fig. 3). The objective of this process is
to obtain a representative sample of perturbations that re-



Norm Attack Attack Intensity ϵ
0 0.0005 0.001 0.0015 0.002 0.003 0.005 0.01 0.02 0.03 0.1 0.3 0.5 1

ℓ∞

FGSM

0.843

0.804 0.764 0.733 0.704 0.655 0.559 0.443 0.343 0.29 0.223 0.179 0.146 0.088
PGD 0.83 0.82 0.807 0.794 0.767 0.725 0.624 0.456 0.331 0.024 0.002 0 0
BIA 0.801 0.762 0.725 0.69 0.615 0.488 0.233 0.037 0.015 0.002 0 0 0.001
AUNA 0.843 0.841 0.842 0.84 0.84 0.841 0.838 0.842 0.838 0.81 0.653 0.499 0.243
DFA 0.813 0.782 0.761 0.735 0.685 0.579 0.331 0.186 0.139 0.093 0.068 0.054 0.06

ℓ2

FGSM 0.84 0.839 0.838 0.836 0.835 0.831 0.822 0.802 0.784 0.671 0.485 0.404 0.32
PGD 0.842 0.841 0.84 0.84 0.84 0.838 0.836 0.832 0.825 0.791 0.711 0.613 0.45
BIA 0.84 0.839 0.838 0.838 0.835 0.831 0.822 0.801 0.781 0.648 0.316 0.12 0.015
AUNA 0.843 0.843 0.843 0.843 0.843 0.843 0.843 0.843 0.842 0.841 0.842 0.84 0.838
DFA 0.84 0.84 0.84 0.84 0.839 0.837 0.835 0.819 0.806 0.706 0.422 0.245 0.154
Average 0.843 0.8296 0.8171 0.8067 0.796 0.7754 0.7372 0.6627 0.5961 0.5651 0.4809 0.3678 0.2921 0.2169

Table 1. Results of Delta Data Augmentation (DDA) on CIFAR10 with ResNet18 on each adversarial attacks: Fast Gradient Sign Method
(FGSM) [15], Projected Gradient Descent (PGD) [21], Basic Iterative Attack (BAI), Additive Uniform Noise Attack (AUNA) [30], and
Deep Fool Attack (DFA) [23] for different epsilon ϵ perturbation intensities, ϵ = 0 means natural accuracy (no attack). In bold are the
highest robust scores for each ϵ, and ℓ∞ ℓ2 norms respectively.

flects the same underlying structure, which can be used to
make downstream training datasets more adversarially di-
verse and thus more robust.

Following Eq. 2, in DDA, we sample perturbations δA
from an upstream pre-trained model A trained on dataset
XA. Then, we apply these perturbations to downstream
training dataset XB for model B.

X ′
B = XB + δA (4)

Thus, DDA can collect and create more complex trans-
formations on data rather than traditional techniques, (rota-
tion, scaling, flipping, etc.). Furthermore, the training time
used for data augmentation of model B is reduced due to the
absence of adversarial training, and the gap between natu-
ral accuracy and robust accuracy is minimized as we forgo
learning explicit adversarial perturbations, preventing over-
fitting to specific types of adversarial attacks.

4. Experimental Setup
We adhere to the fundamental framework and employ

the PyTorch [27] implementation. For the main architec-
ture, we use a ResNet18 [16] pre-trained on ImageNet [14].
We compare our method against two common and popular
data augmentation techniques: RandAugment [13] and Au-
toAugment [12]. Also, we develop a baseline on ResNet18
by standard training with no data augmentation at all, cross-
entropy loss, and Adam optimizer with 0.001 as a starting
learning rate and 30 epochs (Fig. 2).

We test our method (Table 1) on the CIFAR10 [19]
dataset with natural accuracy and robust accuracy using
popular state-of-the-art adversarial attacks: Fast Gradient
Sign Method (FGSM) [15], Projected Gradient Descent
(PGD) [21], Basic Iterative Attack (BAI), Additive Uni-
form Noise Attack (AUNA) [30], and Deep Fool Attack
(DFA) [23]. All these attacks are performed on ℓ2-norm
and ℓ∞-norm using the implementations of FoolBox [31].

5. Discussion
The comparison of accuracy across various data augmen-

tation techniques reveals that DDA performs better than the
others in terms of robust accuracy against PGD and FGSM
attacks. Particularly, DDA outperforms other approaches
in terms of robust accuracy, achieving values of 76.7% and
84% for PGD attack with ϵ = .003 for ℓ∞ and ℓ2 respec-
tively. Also, for FGSM 65.5% and 83.5% for ℓ∞ and ℓ2
respectively with same ϵ.

The comparison of PGD and FGSM attacks with var-
ious ϵ values further demonstrates that the resilience of
the model is significantly impacted by the choice of attack
strength (Table 1). As expected given that greater attacks
bring larger perturbations that are more challenging to re-
cover from, our results indicate that stronger attacks result
in lower robust accuracies (Fig. 2).

Overall, the findings imply that DDA is a successful
technique for boosting the robustness of deep neural net-
works against adversarial attacks. The suggested method
can be used to increase the robustness of models in a va-
riety of applications and is simple to integrate into current
training pipelines.

6. Conclusions and Future Work
In this study, we compared a variety of data augmen-

tation strategies, such as DDA, RandAugment, AutoAug-
ment, and Standard Training with no data augmentation,
to examine the performance of various adversarial attack
methods on the CIFAR10 dataset. Our findings demon-
strated that, in terms of adversarial robustness, our ap-
proach performed better than or equal to State-of-the-Art
approaches. DDA improves the transferability of robustness
against adversarial attacks by reducing the gap between nat-
ural and robust accuracy. Future studies can examine the
use of DDA with additional datasets and see how well it de-
fends against increasingly sophisticated adversarial attacks.
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