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Abstract

Several computer vision algorithms have been proposed
to detect anomalous activities (robberies, murders, vandal-
ism, among others) in videos. According to the learning
approach, they can be classified into probabilistic distri-
bution modeling, sparse coding, and deep learning-based
methods. The main drawbacks of these approaches are (i)
extraction of low-level features that do not capture complex
behaviors of instances on the scene, (ii) generation of fea-
tures from irrelevant regions, (iii) overlooking of relation-
ships among objects, and (iv) omission of long-term depen-
dencies. To solve these issues, we propose a deep learning
architecture that leverages the relationships among objects.
It achieves this by using an attention mechanism and learn-
ing long-term dependencies using a multilayer recurrent
neural network (multilayer LSTM). An AUC score of 0.749
on the UCF-Crime dataset confirms that the proposed algo-
rithm competes effectively against several state-of-the-art
approaches for anomaly detection in surveillance videos. It
also explains the relationship between regions in the video
frames and the anomaly detections.

1. Introduction

The videos captured by security cameras at different
strategic locations in the cities are stored in a central mon-
itoring station where a team of operators evaluates them
for forensic analysis or for carrying out statistical reports
on the city’s security. Nonetheless, nowadays, the number
of surveillance cameras in many cities worldwide has in-
creased drastically, and manually assessing videos is a time-
consuming and cumbersome task.

Several computer vision algorithms have been proposed
to automate this task. Most of them often extract low-level
features such as optical flow [2], dynamic texture (DT) [5],
the mixture of dynamic textures (MDT) [13], cuboids [14]
and convolutional network representation [20].

Most of these methods have been conceived to work in
simple scenarios in which anomalous activities consist of a
single type, such as abnormal pedestrian walkways, people
groups escaping in panic, or moving in the wrong direc-
tion. In these conditions, algorithms work well because the
anomalous activity is characterized by a drastic change in
the scene motion patterns. Nonetheless, they do not perform
well in complex street scenes where anomalous activity re-
sults from the interaction between the objects present in the
scene (spatial context) and its temporal evolution (tempo-
ral context). [6, 13, 14, 16, 22]. Our approach introduces
an algorithm that constructs the representation of the video
segments based on the relationships of the objects on the
scene and uses it to feed a recurrent neuronal network that
learns the long-term dependencies. Thus, the resulting al-
gorithm can detect not only anomalous activities charac-
terized by the drastic change of motion patterns but also
complex anomalous activities that result from long spatio-
temporal interactions among objects in the scene, such as
an armed robbery or a shooting. We present a spatial rep-
resentation that captures the features of objects and their
relationships on the scene based on Faster R-CNN [17], hi-
erarchical clustering, the projection of each region of inter-
est into C3D [21] feature map, and the extraction of a fixed
vector feature by a RoIAlign layer [9]. In addition, we de-
velop an attention model [1] that focuses on regions where
an anomaly occurs. This model computes the convex com-
bination of the feature representation extracted from differ-
ent regions on the scene, giving higher weights to the fea-
tures extracted from anomalous regions. Finally, we present
a recurrent neural network-based architecture that detects
anomalous activities at multiple temporal scales relying on
the convex combination of the feature representation com-
puted by the attention model.



2. Proposed Video Anomaly Detection Method
2.1. General architecture

We first divide the input video into small segments and
extract the C3D features from different regions of the scene
for each segment. Then, we employ an attention mechanism
to weigh these features based on their importance, resulting
in a fixed vector (attended vector). This vector is then fed
into a multilayer LSTM, which captures the long-term con-
text and predicts at each time step a set of temporal windows
that enclose abnormal events. The complete architecture is
depicted in Fig. 1.

2.2. Proposal regions

Most approaches for abnormal event detection rely on
features extracted from complete frames. In contrast, our
architecture detects abnormal events based on features ex-
tracted from the most important regions. We propose that
the most important regions enclose groups of objects that
possibly maintain a relationship in the scene, for example,
a group of people chatting with each other. Given a set
of objects in a scene, the number of partitions that could
form grows according to the Bell sequence. However, not
all partitions are plausible. To find plausible partitions, we
resort to the rules for group formation presented in [18].
Here, the authors propose three rules that a clustering algo-
rithm for group formation must hold: hierarchical coher-
ence (HC), density invariance (DI), and transitivity. HC
implies that groups are composed of individuals and sub-
groups in a recursive fashion. DI refers to obtaining similar
clustering results despite crowd densities. Transitivity re-
laxes cluster formation, allowing two members to be part
of the same group by means of a subgroup standing be-
tween them. Specifically, we used single-linkage. Given a
set of bounding boxes, Ot, we cluster them by using single-
linkage to create a hierarchical cluster Ht. Notice that each
item in Ht is a cluster of bounding boxes. We then generate
a new set Pt, by finding the minimum bounding box that
encloses the regions of each item in Ht. We will refer to Pt

as the set of “proposal regions.”

2.3. Feature extraction

At each time step, the feature extraction process aims to
obtain a fixed-length feature vector for each proposed re-
gion in Pt. To achieve this, we first discretize a video of
length L into T = L/δ non-overlapping video segments,
where δ=16 is the length of the video segment in frames.
For each segment, we use C3D to extract the conv-5b fea-
ture maps Φt. We then project each proposal region onto the
feature maps and feed the resulting tensor to the RoIAlign
layer [9]. The output of the RoIAlign layer is a fixed-length
feature vector representation. The set of feature vectors ob-
tained following the aforementioned procedure is referred

to as Zt.

2.4. Multilayer LSTM and attention-mechanism

At each time step t, we extract the features from the pro-
posal regions and employ an attention mechanism to com-
bine them as follows:

ẑt =
∑

zi,t∈Zt

αi,tzi,t (1)

The combination’s weights (see Eq. (4) and Eq. (5)) are
updated for each time step t and can be thought of as the im-
portance factor that the model assigns to each region. Next,
we input the attended vector ẑt into a module consisting of
three LSTM layers [7,8], which produces a hidden state ht.
Since ht contains the accumulated temporal context up to
time step t, we use it to feed a fully connected layer that
predicts the probability of the occurrence of an anomalous
event before time step t. Let us define a set of k temporal
windows at time t as:

ρt = {(t− bj , t)}kj=1 (2)

where the tuple (t− bj , t) indicates the start and end bounds
of the j-th window. The probability with which the fully
connected layer believes that an anomalous event occurred
in the j-th window is given by the j-th entry of its output
ŷt:

ŷt = σg (Wy · ht) (3)

where σg is the sigmoid activation functions and Wy is a
learnable parameters.

We also utilize the hidden state of the multilayer LSTM
to provide global context to the attention model. Specifi-
cally, given the hidden state of the previous time step, ht−1,
and the set of feature vectors Zt, we calculate the attention
weights αt as follows:

ai,t = wT
a tanh (Wzazi,t +Whaht−1) (4)

αt = softmax (at) (5)

where Wza ∈ Rdc×dz , Wha ∈ Rdc×dh and wa ∈ Rdc are
parameters to be learnt.

2.5. Objective

During the training phase, we train our architecture to
predict temporal windows that capture anomalous events.
To achieve this, we follow the approach presented in [4],
where the training target is derived from computing the tem-
poral Intersection-over-Union (tIoU) between the ground
truth of the training videos and the set of k proposals.
Specifically, for each training video at each time step t, we
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Figure 1. General architecture of our Spatio-Temporal Anomaly Method (STAM). Given an input video, we divide it into short video
segments consisting of 16 frames each. For each video segment, we detect a set of regions that enclose groups of objects in the scene (Pt).
We then extract features for each region (Zt) and weigh them using an attention model. The resulting attended vector (ẑt) is fed into a
multilayer LSTM, which retains the long-term context and predicts, at each time step, the probabilities (ŷt) of an anomalous event has
occurred within a set of time windows.

set the j-th entry of the target vector yt to 1 if the tIoU be-
tween the ground truth and the j-th window (see Eq. (2))
is greater than 0.5, and 0 otherwise. The total loss for a
training video is computed as follows:

L = −
T∑

t=1

k∑
j=1

yjt log ŷ
j
t +

(
1− yjt

)
log

(
1− ŷjt

)
(6)

where T is the number of segments in which was split the
video.

3. Experiments

We evaluate our deep network architecture using the
UCF-Crime Dataset [19] and compared its performance
with other state-of-the-art methods. Specifically, we se-
lect three algorithms: (SBAD) [14] based on sparse
coding, (MDI) [3] based on probabilistic methods, and
(RWAD) [19] based on deep learning. As a performance
metric, we compute the ROC and the AUC score following
the ‘Frame Level’ methodology [13].

3.1. Training STAM

Because of the RAM limitations of our GPU, we do not
use videos longer than 5 minutes. Therefore, starting from
the initial training set, we derived a balanced data set con-
sisting of 602 videos with anomalous activities and 602
videos with normal activities. We use this final dataset
to train our architecture in supervised mode. As UCF-
Crime does not provide ground truth annotations for train-
ing videos, we utilized the annotations provided by [11].

3.2. Implementation Details

The first step for training our architecture is to detect ob-
jects in the training videos. Generally, many available pre-
trained Faster R-CNN weights have been obtained by train-
ing on datasets with well-defined objects. However, surveil-
lance videos are often of low quality. To address this issue,
we trained Faster R-CNN on the MIO-TCD dataset [15]
following the procedure described in [17]. We choose this
dataset for two reasons. First, all its frames were captured
by thousands of traffic surveillance cameras deployed all
over Canada and the United States. Second, the MIO-TCD
dataset contains 11 typical urban street objects, such as
pedestrians, bicycles, motorcycles, cars, trucks, and buses.
After training, we employ Faster R-CNN to detect objects
every 16 frames and select the nine bounding boxes with the
highest confidence score to construct the hierarchical clus-
ters.

We implement the multilayer LSTM and attention model
block in C++ using the Caffe library [10]. During training,
we unroll the recurrent neural network for 562 time steps to
cover the maximum time length of our dataset. We generate
temporal proposals with 25 windows, that’s sizes increase
exponentially from 20 to 462 time steps. To address se-
quences with lengths less than 562, we pad them with zeros
on the right. For model optimization, we adopt the Adam
update rule [12] with a fixed learning rate of 0.05, β1 = 0.9,
and β1 = 0.999. We train the recurrent block on an Nvidia
Titan Xp GPU with a batch size of 64.

3.3. Comparison with the state-of-the-art

Fig. 2 shows the results obtained in the evaluation. Ac-
cording to the AUC score, RWAD obtains the best re-
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Figure 2. ROC curves of the evaluation following the frame-level
methodology.

sult with 0.754, followed in order by the proposed method
(STAM) with 0.749, SBAD with 0.187, and MDI with
0.008. The ROC curves for SBAD and MDI have few op-
erating points, which indicates that these algorithms out-
put similar anomaly scores for both positive and negative
samples. One possible reason for the better performance of
RWAD and our algorithm is their feature extraction phase.
Whereas SBAD learns anomalous behavior at the pixel level
and MDI learns from 2D convolutional features that only
capture appearance, RWAD and STAM leverage C3D fea-
tures that encode appearance and motion patterns.

Fig. 3 shows the results for a video in which the anomaly
is an explosion. Only RWAD, STAM, and SBAD detect the
explosion. After the explosion, only the score of RWAD
decreases, while the scores of SBAD and STAM scores re-
main high. Despite the ground truth not indicating anomaly
after the explosion, the effects remain until the end of the
video. Therefore, the results of SBAD and STAM could
be interpreted as correct. The lack of clear rules to define
the starting and ending of an anomaly is precisely one of
the problems of the UCF-Crime dataset. In contrast, MDI
does not detect the explosion and it shows a false positive
at the end of the video. Fig. 4 shows the results for a video
in which the anomaly is an armed robbery. In this case,
the scores of MDI and SBAD scores do not correlate with
the scores from the ground truth, while the output scores
of RWAD and STAM generate high anomaly scores for the
anomalous frames.

4. Conclusions
We developed a DL-based architecture that leverages the

spatio-temporal context in a scene to detect anomalous ac-
tivities in surveillance videos. This architecture consists of
an algorithm for region proposal generation, an algorithm
for local feature extraction, an attention mechanism, and a
stack of LSTMs. Although the proposed approach yields
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Figure 3. Output score for the “explosion” video category for the
UCF-Crime dataset. The red, green, and yellow dots mark the
numbers of the frames shown in the images above being enclosed
with a rectangle of the same color.
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Figure 4. Output score for a “Robbery” category video for the
UCF-Crime dataset. The red, green, and yellow dots mark the
numbers of the frames shown in the images above being enclosed
with a rectangle of the same color.

a lower AUC value on the UCF-Crime data set than com-
peting state-of-the-art DL-based methods, it is important to
note that our architecture relies on an attention model to
provide explainability and discover the meaning between
regions in the video frames and anomaly misdetections.
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