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Abstract

Classical Machine Learning (ML) models struggle with
data that changes over time or across domains due to var-
ious factors such as noise, occlusion, illumination or fre-
quency, unlike humans who can learn from such non inde-
pendent and identically distributed data. Consequently, a
Continual Learning (CL) approach is indispensable, par-
ticularly, Domain-Incremental Learning, as classical static
ML approaches are inadequate to deal with data that comes
from different distributions. In this paper, we propose a
novel pipeline for identifying tasks in domain-incremental
learning scenarios without supervision. The incremental
pipeline comprises four primary steps. First, we obtain a
base embedding from the raw data using a transformer-
based model. Second, we group the embedding densities
based on their similarity to obtain the nearest points to
each cluster centroid. Third, we train an incremental task
classifier using only these points. Finally, thanks to the
lightweight computational requirements of the pipeline, we
use it to devise an algorithm that can decide in an online
fashion when to learn a new task using the task classifier
and a drift detector. We evaluate our approach by conduct-
ing experiments using the SODA10M real-world driving
dataset and several CL strategies. We demonstrate that the
performance of these CL strategies when using our pipeline
can match the ground-truth approach, both in experiments

assuming task boundaries using a traditional approach, and
also in more realistic task-agnostic scenarios that require
detecting new tasks on-the-fly.

1. Introduction

Machine Learning (ML) has advanced significantly, but
real-life applications often present non-IID data, leading
to domain shift problems. Continual Learning (CL) ad-
dresses these limitations by enabling models to learn contin-
uously after deployment. However, existing methods, such
as regularization [16], replay [7], and architecture modifica-
tions [1,11], assume rigid task boundaries and known tasks,
which may not hold in many real-world scenarios.

We propose a novel task-agnostic approach for domain-
incremental learning that can detect task drift and classify
tasks without supervision. Our approach segments the data
stream into meaningful domains and classes, and applies
appropriate CL strategies to each domain. To the best of
our knowledge, no other works have proposed unsupervised
approaches for identifying and classifying tasks in task-
agnostic domain-incremental learning scenarios for driving
datasets.
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Figure 1. Our method processes a batch of images x associated
with a task Tt, calculates the nearest-centroid embeddings Nt, and
checks for drift. If drift is found, Nt is stored in memory M and
a task classifier h is incrementally trained with Nt and Tt unsu-
pervised. If no drift is detected, classifier h estimates the task T̂t.
The multi-head classifier then chooses the correct classifier based
on T̂t to generate the final prediction y

2. Problem definition

Let X be the input space, Y be the output space, and
T be the space of task IDs. We consider a sequence of
K tasks, where each task k is associated with a joint dis-
tribution Pk(X,Y ) over X × Y . The goal of domain-
incremental learning is to learn a sequence of K classifiers
f1, f2, ..., fK , where fk : X → Y is the classifier for task
k (they are not necessarily different from each other), such
that each classifier can be learned incrementally from data
without forgetting the previous tasks, i.e., when learning fk,
the classifiers f1, f2, ..., fk−1 should be preserved.

During inference, the task ID t ∈ T will be unknown.
The classifier ft for each task t will be used to predict the
output y ∈ Y , that is, ft = pt(y|x). More formally, we can
define domain-incremental learning as:

arg min
f1,f2,...,fK

K∑
k=1

L(fk, Pk) (1)

where the goal is to minimize the loss function L(fk, Pk)
over a set of K functions f1, f2, ..., fK , subject to the con-
straint that each of the K functions can be learned incre-
mentally. As for our experiments, we consider the set of
functions f1, f2, . . . , fK as multi-head classifiers in the fol-
lowing way:

fk(x) = gk(e(x)), k = 1, 2, . . . ,K (2)

where e(x) denotes the shared feature extractor network,
gk(·) denotes the classifier for the k-th task, and x denotes

the input sample. Particularly, we use the ResNet18 [4] ar-
chitecture as the feature extractor network and linear classi-
fiers on top of it.

To improve the performance of the multi-head classifier
at inference time and enable strategies that require the task
ID, such as EWC, ER, LwF, among others, it is necessary
to have a task classifier that can learn the task ID with no
supervision. This task classifier should take the input sam-
ple x and predict the corresponding task ID t ∈ T , which
can then be used to select the appropriate classifier ft for
inference.

Let gt be the classifier for task t learned from data. We
define a task classifier ht : X → T that takes an input
sample x ∈ X and predicts the corresponding task ID t ∈
T . This task classifier can be learned without supervision,
as it simply needs to predict the correct task ID associated
with each input sample.

During inference, given an input sample x ∈ X and the
predicted task ID t̂ = h(x), the multi-head classifier ft̂ is
used to predict the output y ∈ Y . Thus, the final prediction
can be written as:

y = ft̂(x) = gt̂(e(x)) (3)

Therefore, incorporating a task classifier into the
domain-incremental learning framework can be expressed
as:

arg min
h,g1,g2,...,gK

K∑
k=1

L(fk, Pk) (4)

where h is the task classifier, gk is the classifier for task
k, and L(fk, Pk) is the loss function for task k. This ob-
jective function ensures that each of the K classifiers can
be learned incrementally without forgetting the knowledge
they previously learned, while also incorporating the task
classifier into the learning process.

3. Related work
This section introduces related works in the field of Con-

tinual Learning relevant to our research.

3.1. Multimodal transformers

Multimodal transformers, such as CLIP [10], are impor-
tant in CL for generating rich embeddings. TransFuser [9]
and Huang et al.’s neural prediction framework [5] are ex-
amples of transformer-based models for autonomous driv-
ing.

3.2. Domain-incremental learning

Domain-incremental learning (Domain-IL) focuses on
learning multiple tasks sequentially. DISC [8] is an on-
line zero-forgetting approach that requires task ID, while



an autoencoder-based method [2] uses reconstruction error
to identify domains. Domain-aware categorical represen-
tations [15] address stability-plasticity and imbalance chal-
lenges.

3.3. Task-Agnostic Continual Learning (TACL)

TACL aims to learn from non-stationary distributions
without known task identity [17]. Generative replay [12],
Learning without Forgetting (LwF) [6] and Rebuffi’s work
[11] are some examples. However, they lack model-
agnosticism and unbiased (they use the same model for
identification and training) task identification.

In this paper, we propose a more robust approach using
a lightweight, independent model for unbiased task identi-
fication and adaptation while retaining performance on pre-
vious tasks.

4. Components of the pipeline for task-agnostic
domain-incremental learning

We present a pipeline for task-agnostic domain-
incremental learning, which includes the Nearest Centroid
Algorithm for training an incremental task classifier and a
drift detector to identify when to incrementally train the task
classifier.

The task classifier is obtained through the following
pipeline: Semantic embedding. Given a batch of inputs
X = x1, x2, ..., xm, we obtain their embeddings E =
e1, e2, ..., em using the pretrained transformer-based model
CLIP ViT-B/32 [10], represented as E = femb(X).

Density-based clustering. We cluster the embeddings
E using the DBSCAN density clustering algorithm. Let the
clustering labels be C = c1, c2, ..., cm, and the clustering
function be fclust(E; ϵ,minPts).

Nearest-cluster centroids. We obtain the nearest cen-
troids M = m1,m2, ...,mj of the j distinct clusters present
in C. Each centroid mi is calculated using the Nearest Cen-
troids Algorithm [13], represented as M = fcent(E,C).

Nearest-centroid Incremental classifier. The task clas-
sifier ht for task Tt is obtained by combining individ-
ual classifiers using a majority vote, represented as ht =
fcls(Mtd , t

d), where td is the new task ID detected by the
drift detector R.

Drift detector. We define a drift function R that mea-
sures the dissimilarity between the nearest neighbors at dif-
ferent time points:

R(Nt, Nt′) =
1

k

k∑
s=1

d(Nt[s], Nt′[s]) (5)

A larger value for the drift function suggests a possible
shift in the data distribution and a new task.

5. Online algorithm for task-agnostic domain-
incremental learning

We present an online pipeline algorithm for task-
agnostic domain-incremental learning using the compo-
nents discussed in the previous section (refer to Algorithm
1 for details).

For each batch of images, our algorithm calculates the
nearest-centroid embeddings Nt and checks for drift with
the known tasks stored in memory M. Drift is evaluated
using the drift detector. If the batch drifts from all tasks
(i.e., it is a new task), we save Nt in memory, incrementally
train the task classifier ht with Nt and the new task label Tt,
and add a new head to the multi-head classifier for this new
task.

If a non-drifting task is found in memory, the classifier ht

estimates the task ID, which is used to select the appropriate
classifier in the multi-head classifier for inference until a
domain change occurs.

Algorithm 1: Online Task-Agnostic algorithm for
Domain-Incremental Learning that yields decisions
using the drift detector R and task classifier h

Data: MemoryM, dataset Dt

Function online TADIL(M, Dt):
Nt ← get nearest centroid embeddings(Dt)
for Nt′ ∈M.reversed() do

if (not R(Nt, Nt′ )) then
use the task classifier ht′ to predict the
task ID Tt;

if (Tt ̸= Tt′ ) then
raise warning

use head gt′(Dt′) from the multi-head
classifier for inference;

return;
save Nt into memoryM;
train incrementally the task classifier ht using
Nt and a new task label Tt;

add a new head gt(Dt) to the multi-head
classifier;

use head gt(Dt) for inference;
return;

6. Experimental evaluation
6.1. Testbed

The testbed used in the experiments is as follows. Plat-
form: Ubuntu 22.04 (64 bits). Hardware: 2x Intel(R)
Xeon(R) Platinum 8360Y CPU @ 2.40GHz, 256 GB RAM.
Datasets: SODA10M, it contains 10M unlabeled images
and 20k labeled images [3]. We use the objects of the la-
beled images (20,000 1920×1080 color images of 6 differ-
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Figure 2. Soda10M for the CLAD-C benchmark.
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Figure 3. Comparison using the EWC strategy. This figure shows
how a regularization-based algorithm behaves with task bound-
aries.

ent objects) to evaluate our experiments. We created a mod-
ified version of the dataset used in the CLAD-C challenge
for online classification [14] (see Figure 2). We split up the
6 tasks into training (80%) and testing data (20%) so that
we obtain a domain incremental setup for classification. Be-
sides, we tested with different metrics which are aligned to
our experiments.

6.2. Performance of the CL multi-head models

In this subsection, we compare the performance of CL
strategies with different task ID approaches in a classical
CL setup with task boundaries. We implement a multi-
head model using the Adam optimizer, learning rate of 0.01,
and cross-entropy loss. The evaluated CL strategies include
EWC, Experience Replay, and LwF. All strategies use 4
epochs, a batch size of 200, and the same optimizer and
criterion.

The model is provided with a task ID for each task, al-
lowing it to switch between different output heads or param-
eters. We compare three approaches for task ID: ground-
truth, our approach (TADIL), and normal. Figure 3 present

1 2 3 4 5 6
Number of Tasks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pe
rfo

rm
an

ce

Approach: ground_truth | Avg Acc: 0.77

ground_truth-Task1 (Avg Acc: 0.61)
ground_truth-Task2 (Avg Acc: 0.80)
ground_truth-Task3 (Avg Acc: 0.71)
ground_truth-Task4 (Avg Acc: 0.86)
ground_truth-Task5 (Avg Acc: 0.81)
ground_truth-Task6 (Avg Acc: 0.81)

1 2 3 4 5 6
Number of Tasks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pe
rfo

rm
an

ce

Approach: TADIL | Avg Acc: 0.77

TADIL-Task1 (Avg Acc: 0.61)
TADIL-Task2 (Avg Acc: 0.80)
TADIL-Task3 (Avg Acc: 0.71)
TADIL-Task4 (Avg Acc: 0.86)
TADIL-Task5 (Avg Acc: 0.81)
TADIL-Task6 (Avg Acc: 0.81)

1 2 3 4 5 6
Number of Tasks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pe
rfo

rm
an

ce

Approach: normal | Avg Acc: 0.69

normal-Task1 (Avg Acc: 0.61)
normal-Task2 (Avg Acc: 0.78)
normal-Task3 (Avg Acc: 0.62)
normal-Task4 (Avg Acc: 0.80)
normal-Task5 (Avg Acc: 0.74)
normal-Task6 (Avg Acc: 0.58)

Setup: Task Agnostic w/o repetitions | Strategy: EWC | Dataset: Soda10-class with 6 tasks

Figure 4. EWC strategy. This figure shows how this strategy be-
haves with no task boundaries.
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Figure 5. EWC strategy. This figure shows how this strategy be-
haves with no boundaries and repeated tasks.

the accuracy of EWC strategy. Our proposed method per-
forms on par with the ground-truth approach.

Next, we evaluate the three CL strategies in task-agnostic
scenarios, using our drift detector component to detect new
tasks. Figures 4 presents the accuracy of EWC strategy
in this scenario. TADIL outperforms the task ID-oblivious
method and matches the ground-truth approach.

Lastly, we evaluate the CL strategies in a task-agnostic
scenario with task repetitions. Figure 5 present the accu-
racy of EWC strategy. Our proposed method continues to
perform on par with the ground-truth approach, showcasing
its adaptability and effectiveness in addressing real-world
challenges.

7. Conclusions
In this paper, we introduced TADIL, a novel pipeline for

task-agnostic domain-incremental learning without supervi-
sion. Utilizing a transformer-based model, TADIL obtains
base embeddings from raw data and groups them by simi-
larity. A task classifier is then incrementally trained using
these points, and in conjunction with a drift detector, facili-
tates learning new tasks.

The performance of TADIL was showcased through ex-
periments on the SODA10M dataset, where it was demon-
strated that our pipeline could match the ground truth per-
formance in both traditional and realistic task-agnostic sce-
narios.

Future work aims to enhance models for task-agnostic
continual learning scenarios, specifically developing an Ex-
perience Replay strategy using nearest-centroid embed-
dings, and exploring other continual learning scenarios and
modalities.
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