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Abstract

Domain shift is a well-known problem in the medical
imaging community. In particular, for endoscopic image
analysis data can have different modalities that cause the
performance of deep learning (DL) methods to become ad-
versely affected. Methods developed on one modality can-
not be used for a different modality without retraining.
However, in real clinical settings, endoscopists switch be-
tween modalities depending on the specifics of the condition
being explored. In this paper, we explore domain general-
isation to enable DL methods to be used in such scenar-
ios. To this extent, we propose to use superpixels generated
with Simple Linear Iterative Clustering (SLIC), which we
refer to as “SUPRA” for SUPeRpixel Augmented method.
SUPRA first generates a preliminary segmentation mask
making use of our new loss “SLICLoss” that encourages
both an accurate and superpixel-consistent segmentation.
We demonstrate that SLICLoss when combined with Binary
Cross Entropy loss (BCE) can improve the model’s gener-
alisability with data that presents significant domain shift
due to a change in lighting modalities. We validate this
novel compound loss on a vanilla UNet using the EndoUDA
dataset, which contains images for Barret’s Esophagus from
two modalities. We show that our method yields a relative
improvement of more than 20% IoU in the target domain set
compared to the baseline.

1. Introduction

Computer vision has traditionally been an area of sig-
nificant interest in many practical tasks. In biomedical and
surgical fields, imaging and image analysis techniques show

Figure 1. Sample images from EndoUDA. These show the
widely used modality white light imaging (WLI, left) and a
narrow-band imaging frame (NBI, right) for Barret’s Esophagus
(BE) [9].

potential for various automated tasks such as segmentation
[7], tracking, and detection in clinical settings [2]. Further-
more, deep learning-based (DL) methods are increasingly
being developed and deployed in biomedical imaging – no-
tably in endoscopies [3] – as data becomes more available
and procedures become more complex [18].

These advances, however, have also highlighted several
shortcomings in many DL methods, which arise from the
nature of the medical setting: not only are the tasks them-
selves quite difficult, but data availability is a significant
hurdle for most of the common methods used successfully



Figure 2. A schematized view of our problem. We use frames with high availability (easy to acquire both frames and labels in a sufficient
volume for training) as our source domain for training. We use white-light imaging (WLI) for this purpose, as it is widely used for
endoscopic surveillance. Our model is trained using only data from WLI (source) modality, requiring no extra information about any other
target modalities (in our case, Narrow-band imaging, NBI). During the prediction phase our model is expected to perform well not only for
WLI, but also for the target NBI modality. NBI is chosen here due to the lack of expert level annotations available. We present a domain
generalization technique that is able to tackle this problem using a superpixel augmented network referred to as ’SUPRA-UNet’.

in other domains [21]. Furthermore, when there is avail-
able data, it tends to be limited to only a small fraction of
the cases one would observe in real-world scenarios: every-
thing from instruments and acquisition devices, to proce-
dures used and the lighting conditions are variable and can
change from a hospital-to-hospital [26].

One of such tasks where these data constraints become
apparent is in computer vision applications for endoscopy.
Acquisition of medical data is expensive, and time consum-
ing [16]. Obtaining enough volume to improve training in
specific tasks while accounting for variations introduced by
different patients, instruments, and the complex nature of
the environment is not a trivial task. To complicate mat-
ters further, there may be task-specific subdomains that use
instrumentation that can significantly alter the visual prop-
erties of the frames being captured, limiting the usefulness
of models not trained to perform in that subdomain.

An example of this limitation is the usage of different
light modalities during an endoscopic examination. White-
Light Imaging (WLI) may be used for a general exami-
nation, with more specific areas highlighted with Narrow-
Band Imaging (NBI), allowing a clinician to inspect differ-
ent anatomical aspects of the same lesion [6,15]. This is the
case for a condition known as Barrett’s Esophagus (BE),
which involves the presence of columnar epithelium (the
type of lining that usually covers the stomach and intestines)
in the esophagus instead of the squamous epithelium that is
normal in this area of the body [22]. By itself, this condi-
tion is not dangerous, but the presence of this altered ep-
ithelium is correlated with a heightened risk of esophageal
cancer. Early detection is important, as BE is asymptomatic
aside from its relation to Gastroesophageal Reflux Disease
(GERD, colloquially acid reflux) [11, 14].

This makes BE interesting for image segmentation for
two reasons: First, early and accurate detection during rou-
tine endoscopic examinations is critical to reduce the risk
of more dangerous diseases [13]. Second, the use of differ-
ent lighting modalities can improve the ability of a clinician
to detect and inspect the sites where the condition could be
present – particularly with the use of NBI to inspect the
boundary between squamous and columnar epithelium [15].

If a model for endoscopic computer aided diagnostic
tools is to be usable in this setting, then it is important that
such models can work seamlessly in both of these imaging
modalities, and that they avoid the need for any modality-
specific training. As shown in fig. 1 (which shows two sam-
ple images from the EndoUDA dataset using two different
modalities) the changes introduced by switching the light-
ing modality strongly alter the visual properties of the areas
to be segmented [9]. These changes affect a model’s ability
to generalise. This problem is further exacerbated due to the
relatively limited amount of NBI images compared to those
available for WLI.

If one uses more of the available data for WLI, then we
must envisage methods that can reduce the impact of the
domain shift when the Source Domain (SD) is WLI and
the Target Domain (TD) is NBI. The problem is described
graphically in fig. 2. Developing such a modality agnostic
approach for the segmentation of injuries in the esophagus
is the focus of this work.

Several techniques have been proposed to reduce the ef-
fects of domain shift on a model [12, 23], which can be
divided into either domain adaptation methods (where we
have a set of target domains with different data distribu-
tion) or domain generalisation methods (where we wish to



Figure 3. A summary of our proposed model. UNet [20] is first trained using only source domain data, with each frame also being
used to generate a segmentation output using Simple Linear Iterative Clustering (SLIC) [1] which is a k-means clustering algorithm. The
generated mask from UNet is then combined with the superpixel grid, where two different loss objectives are combined: 1) the superpixel
guided loss (Cm) that evaluates how closely the mask follows the superpixel boundaries (on the right, a blue check-mark shows a boundary
being closely followed, whereas the red circle shows a segmentation that does not follow a boundary), and 2) standard binary cross entropy
loss (B), which evaluates the overall accuracy in the prediction (on the right, a green checkmark shows good accuracy, whereas the red
cross shows poor accuracy).

make our model better with any unseen data). There are
many possible directions that one could follow to apply
these methods in deep learning: from using conventional
algorithms and regularization during training, to modifying
the model being used to learn more relevant features or cre-
ating additional methods to learn how to model and lessen
the impact of domain shift [25].

Domain generalisation methods have shown to be effec-
tive in semantic segmentation tasks in areas such as au-
tonomous driving. Thus, in this paper we draw inspiration
from this previous work [24] to propose a new loss func-
tion that utilizes traditional superpixel segmentation using
the Simple Linear Iterative Clustering (SLIC) method, a k-
means-based technique [1] to enforce a cluster-based con-
sistency during training, generating more geometrically reg-
ular predictions that are better translated to other datasets
without requiring any changes to the base model. Our
contributions herein are two-fold: i) SUPRA (SUPeRpixel
Augmented), a framework that generates superpixels and
incorporates our loss to a model and ii) SLICLoss, a loss
that combines agreement with superpixel boundaries gener-
ated by SLIC and the BCE loss function.

In order to validate our proposal (schematically depicted
in fig. 3), we make use of an unmodified (’vanilla’) UNet
model [20] and incorporate an additional loss term in the
form of the proposed SLICLoss. In our experiments, we
compared our method with several baseline models using
only the BCE loss on different modalities for BE in En-
doUDA. The rationale for this case study is to assess if the
proposed loss is capable of improving the network’s gen-

eralisation capabilities for segmenting images containing a
significant domain shift.

The rest of this paper is organized as follows: Section
II further discusses the importance of dealing with domain
shift in endoscopic tasks, analyzing some recent works in
literature. Section III presents the proposed approach and
introduces the SLICLoss. In Section IV we discuss the
experimental setup, providing training and testing details.
Section V presents the results of our experiments in the En-
doUDA dataset. Finally, Section VI concludes the article
and discusses future work.

2. State of the art

The issue of domain shift is one that has been addressed
by many other works in literature. For instance, federated
learning has been proposed to leverage many small datasets
shared between hospitals to generate a single, large model
from them [17]. Another approach has been to modify net-
work architectures to learn differently from the same data,
and then use those various approaches cooperatively for
performing the final prediction [10]. Other studies have
made use of data augmentation, or have incorporated meta-
learning strategies to exploit different characteristics from
the training data in a self-supervised manner [25].

Another subset of domain generalisation methods forgo
using additional data and instead seek to improve the fea-
tures learned by a network to make them more relevant to
the task. Clustering and patch-based constraints have been
used to improve generalisation in road segmentation [24],



Figure 4. Qualitative selection of hyperparameters. Number of superpixels (k, above) shown with a fixed m = 40, and compactness (m,
below) shown with a fixed k = 100. These were varied from a range of k = 25 to k = 5000 and m = 10 to m = 100 in varying intervals.
The values chosen for the final model are shown with a red outline, with an example using the final values appearing on the right side.

and have been shown to reduce the accuracy loss caused by
domain shift. The idea behind using constraints is to en-
force consistency even if doing so may lead to a decrease in
the training accuracy in a particular epoch. This is akin to
seeing the domain shift problem as an overfit scenario: the
constraints have a regularizing effect that encourages the
network to learn more globally applicable features.

Following the promising results of constraints for do-
main generalisation, in this work we drew inspiration from
superpixel-based methods [24] applied to reduce the do-
main shift generated by a switch from synthetic to real
data. Through the use of SLIC, a superpixel grid is gen-
erated without requiring any prior training. In the context
of our work, the domain shift we observe arises from differ-
ent light modalities used in endoscopic interventions. We
demonstrate that superpixel patch consistency not only im-
proves results when switching from real to synthetic data as
implemented in existing literature, but also increases per-
formance when different lighting modalities are used.

3. Proposed Approach

In order to alleviate the problem of domain shift in seg-
mentation tasks for medical imaging, we propose a frame-
work for a model to favor results that have specific visual
properties more globally relevant to the lesions in our data.
We identify two qualities that make the use of SLIC su-
perpixels relevant for BE lesions: first, BE heavily alters
the color of the esophagus both under WLI and under NBI,
suggesting color-based superpixels can provide useful in-
formation. Second, lesions in BE are relatively homoge-
neous, suggesting patch-based consistency is applicable.

To achieve our goal of creating a model that is usable
in separate modalities without retraining, we propose and

test a loss function that penalizes any predictions that gen-
erate images that disagree with color differences present in
the image. This is done by combining two metrics: Binary
Cross-Entropy (BCE) which encourages accurate classifi-
cation results (as commonly used for binary classification
tasks), and a Superpixel Guided Loss, which penalizes the
network for generating masks that are not consistent with a
coarser superpixel segmentation (see fig. 3). To generate
the superpixels used for our method, we make use of SLIC,
an algorithm that uses color and space distances to generate
groups of pixels.

The SLIC superpixel generation algorithm works by us-
ing two main parameters [1]. The first parameter is k, which
is the number of superpixels to generate; this parameter en-
forces the generation of similarly sized regions with spacing
S =

√
N/k, where N is the number of pixels in the image.

The second parameter of the algorithm is m, a constant used
to calculate a distance measure used to determine which re-
gion a pixel belongs to,

D =

√
d2c +

(
ds
S

)2

m2

where dc is the euclidean distance for each color space, and
ds is the euclidean distance between pixels. A higher value
of m will encourage compactness, creating regions with
a lower area-to-perimeter ratio and more regular shapes.
When m is lower, it produces more irregular superpixels
that more strictly adhere to areas that present a change in
color.

The loss function is constructed from two main elements
as can be seen in fig. 3: The first is BCE (represented
with a B in the fig. 3), which evaluates the correctness of
the prediction (y’) by comparing it to the ground truth (y).



Source Domain (White-Light Imaging) Target Domain (Narrow-Band Imaging)
Network Validation IoU Validation Dice Test IoU Test Dice Test IoU Test Dice

UNet 0.7602 0.8454 0.6780 0.7721 0.5359 0.6652
Efficient UNet 0.6228 0.7960 0.5961 0.6972 0.0545 0.0800
Attention UNet 0.6398 0.7557 0.5737 0.6911 0.2672 0.3879
SUPRA-UNet (Ours) 0.7587 0.8432 0.6755 0.7649 0.6450 0.7411

Improvement in Target Domain vs UNet +20.35% +11.41%

Table 1. Segmentation analysis for the different methods. SUPRA-UNet: Model trained on proposed loss. UNet: the vanilla UNet was
trained only on the BCE loss [20]. Efficient UNet: UNet incorporating an EfficientNetb3 backbone [5]. Attention UNet: UNet utilizing
attention gates [19]. The best results are shown with bold formatting. The final row shows the percent difference between our method and
the best performing target domain scores for the baseline (obtained by UNet).

Hyperparameter Source Domain IoU Source Domain Dice Fixed Parameters
λ Weight 50% 0.5438 0.6548 k = 100,

Weight 75%* 0.7643 0.8450 m = 40
Weight 100% 0.6962 0.7925

k 50 Superpixels 0.7466 0.8222
150 Superpixels 0.7059 0.7985 λ = 75%,
500 Superpixels* 0.6881 0.7676 m = 40
1000 Superpixels 0.7379 0.7942

m 20 Consistency 0.7083 0.8012 λ = 75%,
30 Consistency 0.7236 0.8140 k = 100
50 Consistency* 0.4975 0.6151

Table 2. Grid Search. Experiments performed to observe the effect of different hyperparameters on SUPRA’s performance. The validation
split from the source domain is used to determine the results. The models are trained for 15 epochs to generate the preliminary values of
these hyperparameters. λ: Weighing factor for the superpixel boundary consistency k: Number of superpixels generated. m: Compactness.
* Hyperparameter value used for the final model (SUPRA). The best results are shown with bold formatting.

The second is a consistency measure identified as Super-
pixel Guided Loss (represented with a Cm in fig. 3). This
measure determines whether the predicted mask produces
results that are consistent with the superpixel segmentation
generated by SLIC operating on the input frame (x).

The Cm loss works by determining how much of a su-
perpixel’s area is occupied by a single class. This is done
by taking the difference of each class’ occupied area within
a superpixel, and comparing it with a threshold. Any super-
pixel that is occupied by less than the threshold is consid-
ered to be inconsistent with the expected boundary(red cir-
cle in fig. 3). Every superpixel is evaluated in this manner,
with the inconsistencies summed and averaged to produce a
final loss metric.

To combine BCE and Cm, our loss is multiplied by a
weighing factor (λ), and both losses are added and scaled
by 1+λ. The result is then used as the loss for the network.

L(x, y, y′) =
BCE(y, y′) + λCm(x, y′)

1 + λ
(1)

As can be seen in eq. 1, the weighing factor (λ) can be
adjusted to favor more accurate results, or more superpixel

consistent results. A higher λ will strengthen the effect of
the superpixels, at the cost of disregarding overall accuracy.
λ, k, m, and the threshold for Cm are hyperparameters that
must be tuned in accordance to properties in the source do-
main. This tuning is explained in section 4.4.

4. Experimental Design

4.1. Data Partitioning

The dataset used to perform our experiments is the En-
doUDA [4, 8, 9], which contains endoscopic images from
two medical tasks (binary segmentation for BE and polyps).
EndoUDA is composed of 799 images for BE, with 284 in
NBI modality and 515 in (WLI) modality. It also contains
1042 images for polyps, with 42 in NBI modality and 1000
in WLI modality (see fig. 1). We test our method only for
the BE split of the dataset, as SLIC is not adequate for the
topologically difficult characteristics of polyps. For such
tasks, other superpixel generation methods may be more
appropriate. We used a 80/10/10 split on the WLI frames
for training, validation, and testing (respectively) and used
every frame available for NBI during testing (284 frames).



Hyperparameter Target Domain IoU Target Domain Dice Fixed Parameters
λ Weight 50% 0.5944 0.7221 k = 100,

Weight 75%* 0.5865 0.7217 m = 40
Weight 100% 0.4522 0.6089

k 50 Superpixels 0.4937 0.6362
150 Superpixels 0.3738 0.5228 λ = 75%,
500 Superpixels* 0.6429 0.7679 m = 40
1000 Superpixels 0.4135 0.5619

m 20 Consistency 0.3650 0.5153 λ = 75%,
30 Consistency 0.3872 0.4763 k = 100
50 Consistency* 0.5919 0.7212

Table 3. Effect of Hyperparameters on Target Domain. Target domain scores of the models trained using the hyperparameter grid search
as shown in table 2. Although not used to select the final parameters, these results show the shift between the source domain validation
and target domain test performance. Instead of using the grid search, we opted to use a qualitative assessment of the generated superpixel
boundaries to pick the best values for k and m. λ: Weighing factor for the superpixel boundary consistency k: Number of superpixels
generated. m: Compactness. * Hyperparameter value used for the final model (SUPRA). The best results are shown with bold formatting.

4.2. Baselines

In addition to our method, we train three other mod-
els: Efficient UNet [5], Attention UNet [19], and a vanilla
UNet [20]. These serve to observe both the performance of
other models in the dataset being tested, and to confirm the
presence of domain shift between the two lighting modali-
ties: If the source domain testing presents higher accuracy
than our target domain, then domain shift exists and it is
adversely affecting the models’ ability to generalise to NBI.

4.3. Training

All models were trained using a validation loss early stop
with patience of 15 epochs, saving the best validation loss
weights. In table 1, we present the results of all the tested
models. All were trained using Tensorflow 2.8.1 on an RTX
2060 GPU using CUDA 11.2, with a learning rate of 1e−04,
using an Adam optimizer. The batch size was set to 1 for
all runs due to GPU memory constraints. Images were re-
sized from 1164 x 1030 to 256 x 256 using bilinear interpo-
lation for all models. Geometric data augmentations were
used in the training set, using the default Tensorflow gener-
ators. These include horizontal mirroring, rotation, width
and height shift, shearing, and zooming. The maximum
strength for these transformations were set to 5% where ap-
plicable, except for rotation which was set to 20%.

4.4. Hyperparamater tuning

SLIC-produced superpixels are highly dependent on the
parameters used. To ensure the superpixels were being ad-
equately generated, values for λ, k and m were adjusted
through a qualitative observation of the best superpixel
grids generated on a small subset of the training images (see
fig. 4 for an example).

A first approach was to utilize a grid search (see table 2),

using a preliminary training of 15 epochs to test λ, k, and
m at different combinations. However, the first iterations
of this model showed poor results after the parameter selec-
tion. Further diagnosing revealed that the parameters k and
m did not translate from validation to test domain with the
metrics used. This is further evident by observing the test
performance of our grid search hyperparameters (see table
3), but such results are unusable for parameter selection as
they run the risk of introducing target domain information
to the network. Instead, we opted to perform a qualitative
selection of the best parameters.

Our alternative approach involved the qualitative obser-
vation of superpixel qualities as presented in fig. 4. This
involved varying k with m fixed, and viceversa, to observe
the change in two image qualities: The adherence to the ob-
served boundary of different features of the lesion (that is,
if a superpixel segmentation correctly separated differently
colored areas of the image), and the smoothness of the re-
sults (the amount of boundaries that followed noise instead
of the ground truth segmentation). Varying the value of k
caused two visible effects: At very low values (k = 50 and
below), there would be significant undersegmentation caus-
ing lesions to be grouped together with healthy tissue. At
very high values (k = 1000 and above), all noise is seg-
mented in individual superpixels – this could cause the net-
work to learn incorrect information that does not relate to
the injury.

Varying m was more straightforward: a smaller m is di-
rectly related to better boundary adherence (better at dif-
ferentiating colors), but the boundary becomes noisier. A
higher m increases smoothness, but also decreases bound-
ary adherence. With this criteria in mind, we found that
the values m = 50, and k = 500 are a good compromise.
A further increase in m leads to superpixels ignoring color



Figure 5. Qualitative comparison. We include frames from tested models, comparing between SUPRA-UNet (Ours), vanilla UNet,
Attention UNet (Attn UNet), and Efficient UNet (Eff UNet). For all splits, SUPRA-UNet has competitive results on the source domain but
out-performs other baseline methods on target domain samples.

boundaries, while decreases suffered from too much irreg-
ularity in segmentation that strayed from the ground truth
masks. Similarly, increasing k leads to noise being individ-
ually grouped into superpixels. Decreases from k = 500 led
to some undersegmentation. Since λ cannot be tested qual-
itatively in the same manner, we opted to select it based on
the grid search. Following the validation results, λ was set
to a value of λ = 75%.

For Cm, the threshold for the expected occupation was
set to 80%, as this was the observed minimum percentage
of occupation in the GT masks used for the hyperparameter
tuning. Our final model was trained with early stopping
using the final configuration of: k= 500 superpixels, m =
50, λ = 75%, and Cm threshold = 80%.

5. Results

The results for the experiments are summarized in table
1. We can observe that there is a considerable drop in seg-
mentation performance when using BCE loss from the val-
idation set (Source Domain, SD) to the test set (Target Do-
main, TD) in all models, suggesting the existence of severe
domain shift. This is particularly notable in Attention and
Efficient UNet. UNet loses around 0.14 IoU when switch-
ing between lighting modalities, having performed the best
out of all control models used.

Notably, vanilla UNet achieved the best in-domain re-
sults when compared to other unmodified models. Atten-
tion mechanisms are best when there are areas in the im-
age where a network should focus on to find the most rel-
evant features to achieve segmentation, and they are likely
superfluous when the only region to focus on is the lesion it-
self. Efficient UNet, likewise, achieves lower performance:

Here, the choice of backbone is a possible culprit, as it was
observed that the early stop for Efficient UNet was sooner
than those for the other networks (about 30 epochs vs about
50 epochs). This could signify that the backbone chosen
(EfficientNetB3) is too complex for the relatively straight-
forward task of lesion segmentation, but further experimen-
tation is required to confirm this suspicion.

When compared to vanilla UNet, SUPRA-UNet quan-
titatively performed nearly equally as good in the source
domain, with less than 0.01 difference in both Dice and
IoU. This, however, is not the same in the target domain:
SUPRA-UNet handily beats all tested models with an in-
crease of 0.11 IoU against UNet’s results, and a degrada-
tion of only 0.03 IoU when switching lighting modalities.
Here, we notice that the expected regularization is happen-
ing: given a slight reduction in SD performance, we have
significant increases in the TD performance. We can intu-
itively think of this change as the superpixels being unable
to fully describe every lesion with full accuracy, so some de-
tail is lost when the network is forced to heed the boundaries
given by them. This comes at the benefit that the superpix-
els, however, can and do better describe the lesions present
in NBI when compared to an unaugmented network.

The results of this improved representation can be ob-
served in fig. 5, which shows the predicted masks from
all tested networks. The boundaries generated by SUPRA-
UNet are more accurate to the color differences in the
images. Likewise, our method is less prone to generate
patches: it creates masks devoid of internal discontinuities
that favor homogeneous results.

Since SLIC uses color-space features, our boundaries
follow color differences more closely. This is in contrast



(a) (b)

Figure 6. Box plots of tested models. Attn UNet: Attention UNet. SUPRA-UNet: Our method. Eff UNet: Efficient UNet. For the source
domain, performance was similar across all models, with a relatively wide range in results. The best performing models were UNet and
SUPRA-UNet, with UNet achieving a smaller median but with less variation in the results, whereas SUPRA-UNet had a higher median
but more variable results. For the target domain, SUPRA-UNet higher median and less variation.

to the other models: The features learned, while accurate in
the case of UNet, are based around a more complex under-
standing of the image. While these features lend themselves
to marginally better performance in the SD, they generalize
poorly to the TD. Furthermore, the patch-based consistency
that SLICLoss incorporates discourages a common cause
for error both in- and out-of-domain images experience:
Masks with noise that cause highly heterogeneous predic-
tions (areas with both lesion and background classes).

Boxplots were generated for a statistical analysis, and
can be seen in fig. 6. These take into account the 51 test
data points for WLI (10% of the total 515 images), and the
284 frames for NBI. For in-domain data (fig. 6a), mini-
mums were between 0.1 and 0.2 IoU for all models, with
performance close to 0.7-0.8 for their medians, similar to
the mean observed in table 1. UNet and SUPRA-UNet per-
form similarly, with SUPRA-UNet producing more variable
results but with a better mean.

For out-of-domain data (fig. 6b), minimums were 0 for
all models, with some images still being too different from
the source domain to be accurately segmented. Efficient
UNet and Attention UNet had very poor performances, with
Efficient UNet in particular only having a few outliers that
achieved acceptable performance. SUPRA-UNet and UNet
performed better, although both presented high amounts of
variability. For UNet, the explanation is simple: Some ex-
amples were similar enough to the target domain that the
network could predict in the same way it did in the source
domain. For SUPRA-UNet, the variability observed in the
target domain is related to the fact that although our method
does improve domain shift, it does not eliminate it: It still

experiences a difference of roughly 0.15 IoU compared to
its source domain results. Taking this factor into account,
our method achieves a higher overall performance, both
in the maximums and with most of the dataset achieving
higher IoU than the other models.

6. Conclusions

SUPRA-UNet yielded a significant improvement in our
BE target dataset, with a 0.11 increase in IoU when com-
pared to using only BCE as loss for training using white-
light imaging (WLI) as the source domain and predicting
in narrow-band imaging (NBI) as the target domain. This
is done without any degradation in source domain perfor-
mance: We find that it performs statistically very close to
UNet. Even with a quantitative similar performance in the
SD set, it was still able to obtain better qualitative results
in both domains. In the future, other superpixel generation
methods can be tested to incorporate more complex topo-
logical information. Such methods may be able to provide
the same improvement in tasks such as polyp segmentation
by incorporation of structural details in either the loss func-
tion or in the superpixel generation process.
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mer, Michael A. Riegler, Pål Halvorsen, and Thomas de
Lange. HyperKvasir, a comprehensive multi-class image and
video dataset for gastrointestinal endoscopy. Scientific Data,
7(1):283, Aug. 2020. Number: 1 Publisher: Nature Publish-
ing Group. 5

[9] Numan Celik, Sharib Ali, Soumya Gupta, Barbara Braden,
and Jens Rittscher. EndoUDA: A Modality Independent Seg-
mentation Approach for Endoscopy Imaging. In Marleen de
Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy,
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