Leveraging triplet loss for unsupervised action segmentation
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Abstract

In this paper, we propose a novel fully unsupervised
framework that learns action representations suitable for
the action segmentation task from the single input video it-
self, without requiring any training data. Our method is
a deep metric learning approach rooted in a shallow net-
work with a triplet loss operating on similarity distributions
and a novel triplet selection strategy that effectively models
temporal and semantic priors to discover actions in the new
representational space. Under these circumstances, we suc-
cessfully recover temporal boundaries in the learned action
representations with higher quality compared with existing
unsupervised approaches. The proposed method is evalu-
ated on two widely used benchmark datasets for the action
segmentation task and it achieves competitive performance
by applying a generic clustering algorithm on the learned
representations. |

1. Introduction

Unconstrained videos capturing real-world scenarios are
usually long, untrimmed and contain a variety of actions
which can be effortlessly divided by a human observer
into semantically homogeneous units. The task of action
segmentation, which we target in this work, is the pro-
cess of identifying the boundaries of an action, i.e. pour
water, in an untrimmed video of an activity, i.e. mak-
ing tea, even when temporally adjacent actions may have
very small visual variance between them. This problem
has been traditionally tackled through supervised learning
approaches [9, 13]. More recently, weakly-supervised and
semi-supervised approaches have shown to be an effective
way to reduce the labelling effort [0, 14, 15, 19]. However,
these approaches are still data-hungry and computationally
expensive. Unsupervised approaches have developed fol-
lowing two different research lines [1, 11, 12]. Most of them
focus on grouping actions across videos and rely on the use
of activity labels [10, 18,20,22], therefore putting more em-
phasis on the quality of the representation. A few of them,
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the most computationally efficient, act on a single video to
recover clusters [16] or detect temporal boundaries [7] and
do not require any manual annotation.

Our approach follows this latter research line. We as-
sume that the atomic actions can effectively be modelled as
clusters in an underlying representational space and we pro-
pose a novel framework that maps the initial feature space
of a video into a new one, where the temporal-semantic
clusters corresponding to atomic actions are unveiled. Sim-
ilarly to other unsupervised approaches that rely on similar
assumptions [10], our focus is on representation learning.
However, we operate at video level instead of activity level.
Similarly to other fully unsupervised approaches [7, 16],
our method has considerable practical advantages for down-
stream applications since it can be in principle applied to
any video no matter the dataset it belongs to nor if there
exist videos having a similar temporal structure, as well as
being more reliable.

Our technical contribution is a novel approach to action
representation learning that uses a shallow network and a
triplet loss operating on similarity distributions with a novel
triplet selection strategy based on a downsampled temporal-
semantic similarity weighting matrix. Our approach outper-
forms the state-of-the-art in action segmentation on Break-
fast and Youtube INRIA Instructional benchmark datasets.

2. Related work

Fully supervised approaches. Action Segmentation has
been traditionally tackled as a supervised learning problem,
where existing approaches differ mainly in the way tem-
poral information is taken into account [21]. Traditional
supervised methods for action segmentation require signif-
icant amounts of labelled data for training, which restricts
their applicability beyond pre-segmented datasets in large-
scale domains [9, 13].

Weakly and semi-supervised approaches. To alleviate the
need for large annotated datasets, weakly supervised tech-
niques for video segmentation involve using transcripts, vi-
sual similarities, and audio information to generate pseudo-
labels for training [8]. Some approaches use machine learn-
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Figure 1. Overview of the proposed TSA framework illustrated on a sample video of the Breakfast Dataset: network architecture trans-
forming the initial features X into the learned features Z through a shallow network with a novel triplet selection strategy and a triplet loss

based on similarity distributions.

ing models to infer the segments of the video [14]. Other
approaches, such as those based on frame-to-frame visual
similarities, self-attentions mechanism [15] or iterative soft
boundary assignment [6], enforce consistency between the
video and labels without the need for temporal supervision.
Recent work has proposed a semi-supervised approach that
uses unsupervised and supervised training to improve per-
formance [5, 19]. These methods only apply to videos with
transcripts and cannot be extended to unconstrained videos.
Unsupervised learning approaches. Unsupervised learn-
ing approaches typically learn action representation in a
self-supervised fashion and then apply a clustering algo-
rithm to obtain the action segmentation (assuming that the
number of clusters is known). Some methods solve the tem-
poral action relations globally over a collection of videos of
the same activity [10-12, 18,22]. Even if these approaches
do not require labelled data, they are data-hungry and are
not suitable for transferring the learned knowledge to a
dataset with a different distribution and they demonstrated
modest performance for the task of action segmentation at
the video level. In contrast, we aim at unveiling the clusters
underlying a single video. There is limited work in the liter-
ature on learning action representations in a self-supervised
manner within a single video. [1] proposes a model based
on an encoder LSTM architecture with Adaptive Learning
(LSTM+AL) that minimizes the prediction error of future
frames and assigns segmentation boundaries based on the
prediction error of the next frame. Recent works suggested
learning event representations [3] and graph structures from
a single sequence (DGE) [4], but only low-temporal resolu-
tion image sequences have been used for testing.

Fully unsupervised approaches. Clustering methods,
which generate a partition of the input data based on a spe-
cific similarity metric, have been poorly investigated within
the field of action segmentation. However, very recent work
[16] has shown that simple clustering approaches, i.e. K-
means, are instead a strong baseline for action segmenta-
tion. They hence proposed a new clustering approach called
Temporally-Weighted FINCH (TW-FINCH), which is sim-
ilar in spirit to the clustering approach named FINCH [17]

but takes into account temporal proximity in addition to se-
mantic similarity. Recently, [7] proposed to detect action
boundaries (ABD) by measuring the similarity between ad-
jacent frames based on the insight that actions have internal
consistency within and external discrepancy across actions.
We based our approach on the same insight that we mod-
elled via a deep metric learning approach.

3. Methodology

We assume that the representational clustering ground-

ing action segmentation encodes both temporal and seman-
tic similarity, based on two observations: (i) temporal ad-
jacent frames are likely to belong to the same action. (i7)
frames corresponding to the same action (but not necessar-
ily temporal adjacent) should have similar representation,
encoding the common underlying semantic. Formally, let
X € RN*™ denote the matrix of n-dimensional feature
vectors for a given sequence of [V frames. We aim at learn-
ing a parametric function ¢ such that given the input feature
matrix X, new Temporal-Semantic Aware (TSA) represen-
tations Z € RY X" are obtained as Z = ¢(X).
Triplet loss and triplet selection. To learn ¢, we min-
imize a triplet loss function that implements an original
approach to select the triplets appropriately by relying on
temporal-semantic similarity distributions f;s obtained as
the weighted sum of the temporal and the semantic similar-
ity distributions, say f; and fs, fis=a- fi + (1 — @) - fs,
where a € [0, 1]V *! a vector of learning parameters of the
function ¢.

To define fs, we assume that the set of most similar
frames in the original feature space of an anchor ¢ is very
likely to be part of the same action. The self-similarity
of an anchor i to all other frames is defined element-wise
via a pairwise similarity, upon normalization to the total
unit weight, fs = w;;/W, with W = Zi’j)eE w;; and
w;; = exp(—(1 — d(x;,2;))/h), and where E is the set of
pairwise relations, d(-, -) is the cosine distance and h is the
filtering parameter of the exponential function. The pair-
wise similarities are normalized to represent joint probabil-
ity distributions between pairs of elements in the sequence.



To define f;, we assume that as we move away from the
anchor i, the likelihood of a feature vector x;; to repre-
sent the same action as frame 7 decreases. To model this
behaviour, we define a weight function w(-) that depends
on the temporal frame distance d from the given frame as
w(d) = -1+ 2exp(—%d) where (3 is a constant that con-
trols the slope of the weight function and d is the temporal
distance between frames. By imposing that w(L/2) = 0,
and then solving for 3, we get that the constant 3 can be
expressed in terms of the positive window length, that is:
8 =—L/(2In(3)).

The temporal and semantic matrices are downsampled to
reduce computational costs using stochastic pooling during
the training. An anchor index is randomly selected from
the set of downsampled indices ¢ € D. Its set of positive
samples P; is taken as the 5% of the frames with the highest
similarity values in i-row of the temporal-semantic affinity
matrix f;s. We define the negative set N; as the frames
whose i-row f;s is between the mean and the sum of the
mean and standard deviation of the similarity metric. The
triplet loss is defined as:

Loriper = 75 3 max(0, KL(fus (D)1 us(i7)

i€D
- KL(fts(Z)Hfts(ZJr)) (1)

where KL represent the KL-divergence of the temporal-
semantic similarity distribution f;;. For each loss term,
given an anchor index ¢ € D with D < N, we define the
triplet {i, i*, i~} where i* € P; and i~ € N that they are
the sets of positive and negative indices, respectively.

Model architecture. We used a shallow neural network
consisting in our case of a multi-layer perceptron with a
single hidden layer followed by a ReLu activation function.
This makes our approach (Figura 1) easy to train and more
suited for practical applications than existing approaches
consisting of multiple convolutional layers and/or recurrent
networks. Empirical experiments showed that using a sin-
gle hidden layer was easier and faster to train than deeper
models while achieving similar performance. The results
are also invariant to the number of units in the hidden layer.

4. Experimental evaluation

Input features. We use the same datasets and input fea-
tures for the frame-level initial representations asin [1,7,10,
, 18,20]. For BF, we use the Improved Dense-Trajectory
(IDT) features. For YII, we use a set of frame-level repre-
sentations given by a concatenation of HOF descriptors and
features extracted from the VGG16-conv5 network.
Model training. The parameter L used in this paper is the
average number of action classes for a specific dataset, be-
ing 6 and 9 for BF and YII, respectively. Empirical ex-
periments showed that using a single hidden layer was eas-
ier and faster to train than deeper models while achieving

TS (epoch 2)
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Figure 2. Example of training and result obtained by using TSA.
(a) Cosine similarity affinity matrix for X and evolution of Z for
different training epochs. Actions are highlighted as neighbour
communities referring to the segmentation of the video when a
clustering algorithm is applied. (b) Segmentation plots showing
the ground truth, X and Z.

similar performance. The reported results are also invariant
to the number of units in the hidden layer. The architec-
ture used to obtain our features is a multi-layer perceptron
with as many units as the input feature dimensionality, n,
although this could be changed to obtain the desired output
dimensionality. The batch size is equivalent to the down-
sampling and the number of batches will be the quotient of
the number of frames and the batch size. We define the dis-
tance hyperparameter as the minimum threshold ¢ that the
difference of the last two losses should take. This hyperpa-
rameter is set to track early stops with a patience of 2 times.
The minimum and maximum number of training epochs are
fixed at 2 and 50, respectively. The initial learning rate de-
pends on each dataset and follows an exponential learning
decay rate of 0.3 and a weight decay Lo of 1072 as the reg-
ularisation parameter.

Model study. The results of the training process are vi-
sualized in Figure 2, which shows how the initial fea-
tures change to uncover clusters in the new representational
space. As the training progresses, the clusters become more
transparent and more visible along the diagonal. To ob-
tain the final segmentation, three different clustering al-
gorithms were applied: K-means, Spectral clustering, and
FINCH [17]. The performance by our method with or with-
out a layer combination of f; and f (being f;s when both
are marked) is also compared in Table 2.

Experimental results. We report the results of existing un-
supervised methods for comparison, by applying Hungarian
matching at the video-level [2]. We report three widely used
metrics: (i) accuracy of the segmentation and action identi-
fication, computed as the Mean over Frames (MoF) metric.
(if) Similarity and diversity of the predicted segments, cal-
culated as the Intersection over Union (loU) metric. (iii)
The FI-score computed across the predicted segments and
the known ground truth to evaluate the quality of the ac-
tion segmentation. We used the code made publicly avail-
able by the authors > to compute the performance of DGE
on the considered datasets, since this approach, similar to

Zhttps://github.com/mdimiccoli/DGE



Breakfast Action Dataset

Baselines MoF  IoU F1 | T
Equal Split* 34.8 21.9 - X
Spectral* 55.5 44.6 N X
Kmeans* 42.7 23.5 - X
FINCH* [17] 51.9 28.3 - X
Unsupervised

LSTM+AL [1] 429 46.9 - v
VTE [20] 52.2 - - v
DGE* [4] (Kmeans) 58.8 47.8 516 | X
DGE* [4] (Spectral) 59.5 48.5 517 | X
TW-FINCH [16] 62.7 423 498 | X
ABD [7] 64.0 - 523 | X
Ours* (Kmeans) 63.7 53.3 580 | X
Ours* (Spectral) 63.2 52.7 578 | X
Ours* (FINCH) 65.1 52.1 546 | X

Youtube INRIA Instructional Dataset

Baselines F1 MoF | T
Equal Split* 27.8 30.2 X
Spectral* 44.6 55.1 X
K-means* 294 38.5 X
FINCH* [17] 35.4 44.8 X
Unsupervised

LSTM+AL [1] 397 - v
DGE* [4] (Kmeans) 47.0 42.1 X
DGE* [4] (Spectral) 48.9 44.8 X
TW-FINCH [16] 482 567 | X
ABD [7] 492 672 | X
Ours* (Kmeans) 553 59.7 X
Ours* (FINCH) 54.7 62.4 X

Table 1. Action Segmentation results on the BF and YII dataset. T denotes whether the method has a training stage on target activity/videos.
The dash indicates “not reported”. * denotes results computed by ourselves. The best and second-best results are marked in bold and

underlined, respectively

BF (kmeans) BF (FINCH) YII (kmeans) YII (FINCH)
ft fs| F1 MoF | F1 MoF | F1 MoF | F1  MoF
X V| 386 444 |353 490 | 468 528 |441 537
vV X | 577 635 | 540 646 | 548 594 |535 622
vV /| 580 637 |546 651 |553 59.7 |547 624

Table 2. Ablation study the BF and YII datasets, showing the im-
portance of modelling both temporal and semantic information.

ours, computes a video representation suitable for the task
of temporal/action segmentation.

The left-hand table 1 reports the resulting metrics for the
BF dataset, obtained with a learning rate 0.051, distance
0.032 and batch size 128. Our method significantly outper-
forms all other existing approaches. Special attention on
F1, which is considerably better in our results, which tells
us better quality and less over-segmentation in our method.
These results are consistent with all three clustering ap-
proaches considered for obtaining the final segmentation of
our learned features. We can therefore conclude that TSA
outperforms SoTA approaches for the downstream task of
action segmentation. Examples of segmentation results on
a few videos for this dataset can be seen in Figure 2 (b) and
Figures 3 (a)-(b).

The right-hand table 1 reports the resulting metrics for
the YII dataset, obtained with a learning rate 0.403, dis-
tance 0.892 and batch size 12. This dataset is particularly
challenging because of the nature of the annotations, where
most of the frames in each video are labelled as background
frames. To enable direct comparison, we follow the same
procedure used in previous work [7, 16, 18] and report re-
sults by removing the ratio ( = 75%) of the background
frames from the video sequence and then report the perfor-
mance. To capture the temporal dependencies in the time
window, we compute the temporal similarity matrix before
subtracting a ratio of the background frames. Our method
improves the best F/ metrics from the literature with a large
margin, which indicates the quality of the segmentation in
our method on both datasets, as the MoF does not reflect
the quality, especially when the whole sequence is domi-

GT

(a) P45_Scrambleegg, BF - TSA (77.7,72.5) and TW-FINCH
(77.9,68.1).

GT

(b) PI8_Friedeggs, BF - TSA (90.8,85.6) and TW-FINCH
(73.7,61.9).

i

%
iz
P>

o[l T ] T I T 01111
rw-ewu( [ T [ T [T 1)
[TH | 1[Il EINININ
(c) Changing_Tire.02, YII - TSA (76.1,74.5) and TW-FINCH
(57.4,53.2).

Figure 3. Segmentation output comparisons on two sample videos
from BF and YII. Each caption shows the name of the video and
the results (z, y) which are (MoF, F1) for each example.

nated by some very long segments. A segmentation output
sample of our method for this dataset is plotted in Figures 3
(c). Also for this dataset, our results are consistent with all
two clustering approaches.

5. Conclusions

This paper introduced a novel fully unsupervised ap-
proach for learning action representations in complex activ-
ity videos that solely operates on a single unlabelled input
video. Our key contributions are a shallow architecture and
a triplet-based loss with a triplet-based selection mechanism
based on similarity distribution probabilities to model tem-
poral smoothness and semantic similarity within and across
actions. Experimental results on the BF and the YII datasets
demonstrated that the learned representations, followed by
a generic clustering algorithm, achieve SoTA performance.
Furthermore, it has the advantage of not requiring human
annotations, is easy to train and does not present domain
adaptation issues. Future work will focus on improving the
representation and making it more general to match videos
at an activity-level.
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