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Abstract

Identifying the type of kidney stones can allow urol-
ogists to determine their cause of formation, improving
the prescription of appropriate treatments to diminish fu-
ture relapses. Currently, the associated ex-vivo diagnosis
(known as Morpho-constitutional Analysis, MCA) is time-
consuming, expensive and requires a great deal of expe-
rience, as it requires a visual analysis component that is
highly operator dependant. Recently, machine learning
methods have been developed for in-vivo endoscopic stone
recognition. Deep Learning (DL) based methods outper-
form non-DL methods in terms of accuracy but lack ex-
plainability. Despite this trade-off, when it comes to mak-
ing high-stakes decisions, it’s important to prioritize under-
standable Computer-Aided Diagnosis (CADx) that suggests
a course of action based on reasonable evidence, rather
than a model prescribing a course of action. In this pro-
posal, we learn Prototypical Parts (PPs) per kidney stone
subtype, which are used by the DL model to generate an
output classification. Using PPs in the classification task
enables case-based reasoning explanations for such out-
put, thus making the model interpretable. In addition, we
modify global visual characteristics to describe their rele-
vance to the PPs and the sensitivity of our model’s perfor-
mance. With this, we provide explanations with additional
information at the sample, class and model levels in con-
trast to previous works. Although our implementation’s av-
erage accuracy is lower than state-of-the-art (SOTA) non-
interpretable DL models by 1.5%, our models perform 2.8%
better on perturbed images with a lower standard devia-
tion, without adversarial training. Thus, Learning PPs has
the potential to create more robust DL models. Code at:
https://github.com/DanielF29/Prototipical Parts

1. Introduction
Urolithiasis is a disease in which kidney stones form

somewhere in the urinary tract [28]. In developed coun-
tries, this disease has become a public health problem and
presents a high incidence of kidney stones episodes, af-
fecting up to 10% of their population [18]. The formation
of kidney stones is strongly related to factors such as diet
[13,25]. However, there are other factors that can lead to the
production of a kidney stone such as age, chronic diseases,
hereditary-family history, among others [4, 6]. The timely
identification of a kidney stone aids clinical specialists in
determining the causes of its formation and to prescribe a
personalized treatment, which can prevent relapses [13].

The morpho-constitutional analysis (MCA) is the stan-
dard technique for determining the different types of whole
kidney stones removed during surgery (ex-vivo stones)
[5, 6]. Using this method it is possible to identify 21 differ-
ent types of kidney stones, with both pure and mixed com-
positions [4]. Although the MCA efficiently establishes the
type of ex-vivo kidney stones, it is very difficult to provide
a reliable diagnosis during an endoscopic intervention (in-
vivo), and the results of the MCA on extracted stones (ex-
vivo) may take several days. Also, it can be difficult to carry
out the inspection during surgery, as the extraction process
can take up to one hour [4]. Furthermore, it is very diffi-
cult to train specialists on this technique, even considering
a high incidence of kidney stone episodes.

Given the importance and difficulty of performing the
visual inspection in a repeatable and highly reliable manner,
recently, several Artificial Intelligence (AI) methods have
been proposed for automating the kidney stone classifica-
tion process. Using AI to automate the classification of
kidney stones entails either replacing MCA or aiding the
surgeon during the extraction process.



Figure 1. Traditional Morpho-constitutional Analysis (MCA) involves an endoscopic procedure to locate and extract a kidney stone (Ex-
vivo), and subject it to visual and Fourier Transform Infrared Spectroscopy (FTIR) analysis by a specialist for classification, in the MCA
section of the figure. Recent works have proposed using Deep Learning (DL) to classify kidney stones during an endoscopic procedure
(In-vivo) automatically, represented in the XAI section of the figure. We argue and show, eXplainable AI (XAI) is needed for the adoption
of DL as a Computer Assisted Diagnosis (CADx) tool. In the orange box is the extension to the current DL systems this proposal enables.

(a) Model architecture and proposed label (b) Visual explanations, similarity scores and visual quantitative descriptors

Figure 2. (a) The model classifies correctly a kidney stone patch, sub-type ”WD”, by measuring the similarity of learned Prototypical-Parts
(PPs) to parts in the input image. As seen in (b), first, the most relevant area on the input image is indicated by a yellow bounding box and
a heatmap representing levels of similarity on the input image for each Prototypical-Part (PP). Second, the image with the representative
part from the training set that looks like the input indicated part is also shown on a yellow box, with its corresponding heatmap. Third, the
level of saliency of visual characteristics and the descriptors are obtained. In this example descriptors for the most relevant PP are shown,
indicating hue as the most relevant feature for the activation of this PP. Then, PPs identified work both as our explanations and for the
classification, rendering this architecture interpretable, easing the urologist task of kidney stone classification, as they are provided with
the reasons used by the model for the suggested classification.

Several DL-based techniques in particular have demon-
strated that is possible to replicate the results obtained by
well-trained specialists [2, 10, 15, 20, 21]. However, DL
models lack interpretation of the extracted features, making
these models of limited help in clinical settings. To facil-
itate clinical acceptance, a DL model will need to provide
the specialist with its reasoning process, this implies pro-
viding evidence on the what, how and why behind any sug-
gested classification [7,26]. Therefore, to be a useful aid for
CADx purposes, any evidence should reflect the same key
distinctions used for MCA by a specialist.

In order to pave the way for AI-based interpretable MCA
using deep learning techniques, we leverage recent strides
in explainability that seek to base image classification on
case-based reasoning [1,3,22]. In this work, both visual ex-

planations and quantitative information about visual char-
acteristics deemed important by the network are provided
[19]. It must be emphasized that the explanations provided
by our approach follow the reasoning processes of urolo-
gists during MCA by showing the detected morphological
relevant features of each image as learned PPs.

Overall, this work presents an interpretable DL classifier
for MCA. This proposal facilitates human-machine collabo-
ration for morphological analysis whose explicit reasoning
can be easily inspected, understood and verified by urolo-
gists and medical specialists. In contrast to previous works,
we evaluate our interpretable models and their DL counter-
parts under perturbations of global visual characteristics to
describe their relevance to the PPs and the sensitivity of our
model.



The of the paper is organized as follows. In the follow-
ing Section 2 the proposed approach reasoning and justifi-
cation are presented. In Section 4 the experimental setup is
described for our experiments. In Section 5 we share our
results and present a discussion on their implications, shar-
ing one explanation case comparing a correct and incorrect
classification. Finally, in Section 6 the conclusion and the
insights obtained for further research in the field are pre-
sented.

2. Motivation
MCA consists of two complementary analyses of the

kidney stone ex-vivo in the laboratory. First, a specialist
performs a visual inspection of the characteristics (such as
color, texture and shapes) of the surface (external) and sec-
tion (cross-sectional) views. Second, a biochemical study
is performed to determine the main components in the
stone through an Fourier Transform Infrared Spectroscopy
(FTIR) study [9]. Both studies complement each other to
provide a detailed report to determine the type of kidney
stone. This traditional MCA process is represented in the
MCA area in Fig. 1.

Recently proposed AI systems for kidney stone clas-
sification are presented as automated CADx tools. This
approach could enable faster and more reliable diagnosis
based solely on kidney stone images, reducing the need for
invasive procedures, on in-vivo [10] or ex-vivo [2, 15, 20]
conditions, as represented in MCA-Based DL, the grey area
at Fig. 1. Also, for in-vivo scenarios, the operations would
be quicker to perform and less traumatic, due to the classi-
fication of the kidney stones right before performing dust-
ing, a process intended to fragment and destroy the kidney
stones inside the urinary tract. Current DL classifiers of
kidney stones are black boxes, as those have the limitation
of being unable to describe the inner workings that led to
a given prediction beyond the class label. Therefore, these
types of models cannot provide useful information to the
specialist to understand how features on the input image
were used to output the classification proposed by the DL
model.

The eXplainable AI (XAI) field seeks to remedy these
limitations. XAI methods are used to provide an explana-
tion of how DL models arrived at a particular output, typ-
ically after the classification was assigned. If DL models
achieve high performance and can provide explanations for
the classification based on relevant features for the special-
ists, then it would be easier to maintain accountability for
recommended treatments based on those analyses. In the
area indicated by the XAI bracket at Fig. 1, a holistic expla-
nation is represented, by providing the description of what
and why visual features are relevant from the input image,
as quantitative evaluations of visual features, and a saliency
map highlighting where the described features are located.

Explanations that could be considered complete do not yet
exist for kidney stone identification. Nonetheless, improv-
ing explanations by indicating precise visual characteristics
would facilitate the adoption of DL CADx tools, resulting
in faster, more accountable, and repeatable diagnosis rec-
ommendations for the treatment of urolithiasis.

Taking into account the previously mentioned desired
characteristics of explanations, in this work, we seek to im-
prove the current methods by adding the required explain-
ability to facilitate the morphological analysis of kidney
stones, our proposal of how to achieve this is depicted in
Fig. 2. For context, Fig. 3 presents a visual comparison of
different explanations. Then, to improve DL-generated ex-
planations for the classification of kidney stones we began
generating saliency maps of learned representative parts, the
learned PPs, for each class [12], after, we evaluate which
global visual characteristics PPs are relaying for such clas-
sification [19].

3. Proposed Approach
Having a single heatmap as a visual explanation, as most

current XAI visualization methods do, is an oversimplifica-
tion of all the characteristics expected and used to classify
a kidney stone into its corresponding type. To alleviate the
unmet needs of most of the current DL models and XAI
visualization methods, this proposal leverages a case-based
reasoning process. Our proposal pipeline does this by ex-
tracting semantic features, representing parts, from an input
image with a Convolutional Neural Network (CNN). Then,
the extracted features are measured against the learned pro-
totypical parts, in the form of similarity scores, as indicated
by equation 1, and represented in Fig. 2b. Finally, the out-
put prediction of the classification task is a weighted com-
bination of the similarity scores. Using these same learned
PPs for the output of the model and the explanations, the
method guarantees faithfulness of the explanations to the
inner workings of the model. Current case-based reasoning
methods, instead of using high-dimensional features from
the convolutional layers of a CNN, use the identification of
a few prototypical parts [1, 3, 22, 23]. This identification
of a limited number of prototypical parts enables user un-
derstanding of the learned reasoning behind the DL model
output, which we show, achieves competitive performance
against its non-interpretable counterparts. The advantage
of the case-based reasoning process is that the explanations
generated follow the same reasoning process a specialist
used to classify a kidney stone image.

However, for images of kidney stones, a great level of
expertise is required, and thus, explanations generated from
PPs for kidney stone patches still depend on non-obvious
characteristics from the input image for non-experts, reason
for us to quantify the sensitivity of PPs to a set of perturba-
tions [19], which we dub herein as “Descriptors”.



Figure 3. Visual comparison of different types of model interpretability on an example of a kidney stone image as an example. (a)
Traditional non-interpretable deep learning output classification of a kidney stone [15], (b) object-level attention map (e.g., class activation
map [24], (c) part attention (provided by attention-based interpretable models [30]); and (d) part attention with similar prototypical parts [3],
with additional (e) quantitative evaluations of visual features, the descriptors [12, 19].

Each perturbation is directed at a particular visual char-
acteristic (Brightness, Saturation, Shape, Texture, Contrast,
and Hue). These descriptors allow measuring individually
the level of importance of visual features to each of the PPs,
as shown in the table in Fig. 2b.

Our model shows the underlying decision-making pro-
cess for each case, based on several explanations which cor-
respond to the most similar cases identified and used by the
model to give its suggested classification of the image. Fig.
2 shows an example of how our proposal works: I) Our
model processes an input image through a feature extractor
backbone (CNN in Fig. 2a). II) Similarity of the learned
PPs to the extracted features from the CNN are calculated
accordingly to equation 1 (Similarity score in Fig. 2a). III)
From the Prototypes layer, in Fig. 2a, the scores of PPs cal-
culated against the input image are processed through a lin-
ear weighted combination, a fully connected layer, to pro-
vide a final classification of a kidney stone image. IV) The
main PPs that determined the classification are provided as
the most similar cases to their respective parts from the in-
put image, as seen in the blue box in Fig. 2b. V) Finally,
the saliency of certain characteristics for each prototypical
part is evaluated, the Descriptors, listed in the table in Fig.
2b and provide a description of the input image features that
mainly triggered the activation of the corresponding learned
Prototypical-Part (PP).

This capacity yields predictions that are easy to under-
stand by specialists familiarized with the features related to
each kidney stone type and subtype, rendering classifica-
tions interpretable for urologists. Thus, aiming to help in
the morphological analysis of each kidney stone image, the
trained model provides the specialist with the means to trust
the AI, check its output for plausibility, and easily overrule
it when necessary. Our approach, with its inherently in-
terpretable reasoning process, contrasts directly with previ-
ous work that relied on post-hoc explanation techniques to
explain a trained black-box model on particular classifica-
tions [11, 20] or with global explanations [8].

Table 1. Number of complete endoscopic images acquired.

Subtype Main component Key Surface Section Mixed

Ia Whewellite WW 62 25 87
IIa Weddellite WD 13 12 25
IIIa Acide Urique AU 58 50 108
IVc Struvite STR 43 24 67
IVd Brushite BRU 23 4 27
Va Cystine CYS 47 48 95

TOTAL 246 163 409

Figure 4. Examples of kidney stones patches extracted from the
dataset used in [8]. This endoscopic dataset consists of six of the
most common kidney stones namely Whewellite (WW), Weddel-
lite (WD), Acide Urique (AU), Struvite (STR), Brushite (BRU),
and Cystine (CYS).

Following the architecture proposed on [3, 22], in this
study, we explore ProtoPNet architecture with some impor-
tant differences, I) the analysis performed explores different
backbones, with the intention to compare CNN with differ-
ent levels of intricate connections. II) Different number of
prototypical parts per class and III) The relevance of data
augmentation for training. A relevant note is that the train-
ing of the models was performed without part annotations,
only relying on the class label.



3.1. Kidney stone dataset

A simulated in-vivo dataset of endoscopic images was
used for the experiments reported in this contribution (Table
1). This dataset consists of surface (246 images) and section
(163 images) views. Each view contains six of the most
common kidney stone sub-types: Ia (Whewellite, WW),
IIa (Weddellite, WD), IIIa (Uric Acid anhydrous, UA), IVc
(Struvite, STR), IVd (Brushite, BRU), and Va (Cystine,
CYS). Two different reusable digital flexible ureteroscopes
Karl Storz (Storz Image 1 Hub and Storz image1 S) cap-
tured images of real kidney stones in an environment that
simulates real conditions (such as illumination or blur) dur-
ing surgery. In addition, the acquired endoscopic images
were labeled manually by the urologist Jonathan El-Beze
(see [8] for more details).

In order to train DL-based models, 12,000 square-
patches of 256×256 pixels were extracted from 409 endo-
scopic images of both views. This combined data is referred
to as mixed dataset. Patches of the dataset are shown in Fig.
4. For more details, patches were extracted with the method
described in [20] and [15].

3.2. Model architecture:

The architecture implemented uses a feature extractor
f(x), in this proposal a CNN, to perform the extraction of
semantic features from the input images x and learn n pro-
totypes per class, corresponding to parts in the input image.
This first step of feature extraction from the input image
implies the potential diversity and quality of possible proto-
typical parts to be learned from. Hence, three CNN back-
bones are explored (VGG16, ResNet50 and DenseNet201)
in order to compare the different possible performances ob-
tained with our approach and compared against pure non-
interpretable CNNs present in the estate of the art for kidney
stone identification.

Next, two layers of 1× 1 convolutions are added, to ad-
just the depth of the feature activation maps to the depth
selected of 128 for the layer of PPs, layer g. The variable l
is used to index each of the 128×1×1 patches f(x)l across
the spatial dimensions. The layer of PPs g, contains n pro-
totypes to be learned per class, with dimensions 128×1×1.

Since a prototype has the same number of channels but
a smaller spatial dimension than the convolutional feature
maps f(x), we can interpret the prototype as representing a
prototypical activation pattern of its class and we can visual-
ize the prototype as a patch of the training image it appears
in. The distance between pj and each of the l 1 × 1 spatial
patches of the convolutional feature map f(x) is measured
by dj,l = ∥pj − f(x)l∥22, and converts these distances to
similarities sj,l by:

sj,l = log
dj,l + 1

dj,l + ϵ
(1)

Where ϵ is a small value to avoid division by zero. This
similarity scores sj,l can be arranged spatially into a simi-
larity map, upsampled and superimposed on the input im-
age to generate a saliency map as the ones presented on the
blue box in Fig. 2b. The overall similarity score of the cor-
responding PPs is the highest score sj obtained from sj,l.
These similarity scores are then processed with a fully con-
nected layer, as to combine them in a weighted combination
to obtain an output per class, which is then normalized with
a softmax function. The details for the initialization and
training hyperparameters, except for the data augmentation
used, follow [3].

3.3. Descriptors calculation:

Importance scores for image characteristics of the
PPs are analyzed by measurement of the change
in the similarity score sj when perturbing the in-
put image with certain modifications ŝj . Let i ∈
{brightness, contrast, saturation, hue, shape, texture}
denote the type of modification, as further detailed in [19].
Then the local importance score Φi,j,k

local of characteristic i
for test image j ∈ Stest with class k on the j− th prototype
is the difference in similarity score:

Φi,j,k
local = sj − ŝj (2)

And its global importance is a weighted arithmetic mean by
weighing the local scores of all images in Strain by their
respective original similarity score per PP:

Φi,j
global =

∑|Strain|
k=1 Φi,j,k

local · sj∑|Strain|
k=1 sj

(3)

Hence, if unmodified image k gets a low similarity score
with prototype j, it will provide a low weight during the
global importance calculation. In contrast, if the prototype
j is clearly present in image k, the architecture will assign a
high similarity score and hence the local importance score
for image k gets a high weight. As demonstrated in equation
3, these importance scores can be used to create global ex-
planations that explain a prototype, and local explanations,
equation 2, that explain the main visual features responsible
for a high similarity score between a given image and a pro-
totype. As appreciated from equation 2 and equation 3, with
this descriptors the intention is to explain the identification
of PPs on the input image from the models perspective, not
from human perception, nonetheless, since the descriptors
explored are humanly interpretable actually those do enrich
the explanations obtained. The specifics for the different
perturbations used to obtain the values of the PPs descrip-
tors follow [19].

3.4. Evaluation metrics

To determine the different types of kidney stones in en-
doscopic images, MCA specialists perform a visual inspec-



tion of the surface (external part) and section (internal part)
view, and provide a detailed report of each view of the kid-
ney stone. In addition, in order to improve performance in
this task, MCA also proposes combining information from
surface and section views, since both views provide relevant
information for classification. [4]

In this work, we perform different training of mixed
views models (similar to how MCA specialists perform
it). The accuracy and precision metrics are mainly used
to quantitatively evaluate different implementations of DL
models proposed in the SOTA mentioned to be intended as
a CADx tool [2, 10, 15, 20, 27]. Therefore, our particular
implementations were measured and compared on accuracy
as well. It can be observed in Table 2 the comparison of the
accuracy metric of recent works in the SOTA for the task of
kidney stone identification against our implementations.

4. Experimental Setup
Three different CNN architectures are explored for our

proposal: i) a VGG16 to examine the performance of a sim-
ple deep CNN, ii) a ResNet50 to consider a medium size
CNN with residual connections and iii) a DenseNet201 for
the evaluation of dense connections of a deep model to the
SOTA for kidney stone identification. These architectures
were pre-trained on ImageNet, to then train them with the
kidney stone dataset. This enables having these CNNs as
baselines, and ResNet 50 and VGG16 are also used on other
implementations in the current SOTA for kidney stone iden-
tification [2, 11, 14, 16, 17, 29].

For the prototype layer g, the number of PPs per class
explored are (1, 3, 10) PPs per each of the six classes of the
three configurations of our dataset, described in section 3.1.
The training of our implemented ProtoPNet models is a cy-
cle consisting of three stages: (A1) Updating the weights of
the convolutional layers used as a feature extractor f(x) per
10 epochs, using the loss function presented in [3]. (A2)
Projection of the prototype layer g to their corresponding
closest parts after the convolutional layers f(x) updates.
Detailed description in supplementary material section ??
(A3) Update of the fully connected layer h1 weights for 20
epochs (FC & Softmax layer in Fig. 2a). We repeated this
cycle three times and selected the best model on the mixed
test data obtained during one of the (A3) phases.

Preparation for the train and test sets were 80% (1,600
images per class) and 20% (400 images per class), respec-
tively. The patches were also “whitened” using the mean
mi and standard deviation σi of the color values Ii in each
channel (Iwi = (Ii −miσi), with i = R,G,B). The differ-
ent mentioned configurations for training were performed
on the mixed data, described in Section 3.1, without data
augmentation and with data augmentation. The data aug-
mentation used consists in randomly applying one data aug-
mentation at a time to an input image, from a set of visual

Table 2. Accuracy of state-of-the-art models and three of ours for
identifying kidney stones. Models trained with data augmentation.

Method Surface Section Mixed
Martinez, et al. [17] 56.2±23.3 46.6±12.8 52.7±18.9
Estrade, et al. [11] 73.7±17.9 78.8±10.6 70.1±22.3

Black, et al. [2] 73.5±19.0 88.8±02.8 80.1±13.8
Lopez, et al. [14] 81.0±03.0 88.0±02.3 85.0±03.0
Lopez, et al. [16] 83.2±01.2 90.4±04.8 85.6±00.1

Villalvazo-Avila, et al. [29] 88.8±02.8 84.4±06.0 96.6±00.5

Ours
Densenet201 3pps 80.2±00.6 87.6±06.2 85.2±01.5

Resnet50 1pps 80.9±01.3 91.0±03.3 88.2±02.1
Vgg16 10pps 76.7±02.2 82.6±04.9 82.1±00.9

transformations. This set of transformations consists of hor-
izontal flip, vertical flip, rotation between -180 and 180 de-
grees, a distortion scale of 0.4, translation up to 0.2, or sym-
metric padding of 50 pixels. After selecting the transforma-
tion it has a 50% chance of been applied.

After training the different model’s configurations, eval-
uation of the perturbations, mentioned in Section 3.3, is
carried out as PPs descriptors and, additionally, we eval-
uate the performance of the models under these perturba-
tions (graph in the supplementary material as Fig. ??). To
preserve clarity of results, supplemantary ??????, Fig. 6
and Tables 2 and 3, only show the results on the mixed test
data. Additionally, the performance of the trained models
under different levels of change on the most impactful per-
turbation, the hue channel perturbation, is evaluated. The
original change in hue explored in [19] applies a color jitter
modification with the torchvision library to the input im-
ages, fixed on a change of 0.1. We explore a range of values
for the change in the hue channel to characterize the sensi-
tivity of the performance of our models. Fig. ?? illustrates
the performance of one model training configuration under
different hue channel settings.

5. Results and Discussion

5.1. Implementation details

Experiments were carried out to explore different back-
bones for the feature extractor network f(x), the numbers
of PPs per class and the significance of data augmentation.
This, is to evaluate the model’s performance and the ob-
tained explanations. In contrast to CNNs, which are black-
box classifiers, our proposal provides explanations for input
images in three different ways: i) by showing the activa-
tion area, where each PP is identified. ii) The correspond-
ing representative example image to each activated PPs. iii)
Quantitative evaluations of how relevant six different visual
descriptors are for the activation of each PP.



Figure 5. UMAP of the Part-Prototypes and descriptors activations on the test patches of kidney stone images, for the particular case of a
ProtoPNet using DenseNet201 as the backbone and 3 Prototypical parts per class. Our approach allows obtaining separate clusters of the
output classes.

Figure 6. The six descriptor activations of the Prototypical Parts (PPs) per class, for the particular case of a ProtoPNet using DenseNet201
as the backbone and 3 Prototypical parts per class.

5.2. Visualization of a case example of explanations

In Fig. 5, an example of our model classifications is
shown. We found that averaging the global scores of the
PPs descriptors per class results in a hierarchy of descriptor
significance, as depicted in Fig. 6. The WD class reveals a
unique pattern of descriptor activation. An examination of
several instances shows that the average activation of a class
descriptors can hint at misclassifications. As shown in Fig.
5, a green diamond represents a misclassified AU image,
which is misidentified as WD due to its activations corre-
sponding to those of the WD class. This causes the image
to appear within the WD class cluster on the UMAP plot.
We use a UMAP visualization to present PPs activations for
input images in the context of the top three discriminative
dimensions. This UMAP highlights class separability for
each output class of the ProtoPNet, as showcased in Fig.
5. The use of descriptors mitigates the cases for visually
similar PPs by providing details on the characteristics most
relevant for each PP [19]. Additionally, learning PPs from
patches of kidney stone images allows observing PPs are
learned proportionally to the architecture of the CNN used.

5.3. Performance results

A summary of the accuracy of the different configura-
tions of models trained is displayed in Table 3. Tests carried
out on the original mixed test dataset, corresponding to the
training mixed dataset, are considered Independent Identi-
cally Distributed (IID) data, tests performed under pertur-
bations applied to the original test dataset are considered
Out Of Distribution (OOD) data and named accordingly in
Table 3. Usage of data augmentation yielded an average
3% improvement accuracy compared to the non-augmented
approach consistently across different evaluations. To ease
presentation, we report results just on models trained with
data augmentation.

The performance of our implemented ProtoPNet mod-
els is comparable with its corresponding non-interpretable
CNN backbone models as also appreciated in Table 3. The
average accuracy of our implementations keeps competi-
tiveness with a difference not bigger than ≤ 0.18%, when
compared with the average accuracy of the baseline CNN
models. The mean values and standard deviations displayed
in Table 3 are computed based on the configurations of the



Table 3. Performance metrics of our models and convolutional neural networks used as backbones. Evaluations are divided between tests
performed with the same type of data the model was trained, considered Independent Identically Distributed (IID) data and tests performed
under perturbations, which are considered Out Of Distribution (OOD) data. All models were pre-trained on ImageNet.

IID OOD
Model Accuracy (%) Precision (%) F1 (%) Accuracy (%) Precision (%) F1 (%)

DenseNet201 89.67±3.60 90.51±3.60 89.47±3.46 58.44±28.06 60.22±29.62 54.54±32.73
ResNet50 83.40±5.32 85.58±4.30 83.11±5.21 45.12±20.82 49.16±24.08 38.25±23.47

Vgg16 81.47±2.72 84.71±2.64 80.62±3.84 58.35±22.62 63.73±19.93 54.38±26.30
CNNs Average 84.84±5.29 86.93±4.35 84.40±5.60 53.97±24.62 57.70±25.40 49.06±28.56

DenseNet201
1 PPs 86.29±1.91 87.54±1.34 86.25±1.78 60.31±20.32 70.29±14.38 57.45±23.23
3 PPs 85.19±1.50 86.08±1.27 85.21±1.42 59.97±19.91 69.21±12.59 57.66±22.14
10 PPs 87.29±0.92 87.99±0.94 87.23±0.92 61.20±19.33 71.26±11.92 59.01±21.37

ResNet50
1 PPs 88.21±2.07 88.61±1.88 88.21±2.05 58.26±24.23 66.48±18.53 55.16±27.50
3 PPs 86.66±1.37 87.11±1.55 86.62±1.45 57.90±21.82 63.24±19.16 54.21±25.32
10 PPs 85.44±1.44 86.16±1.15 85.43±1.42 56.31±22.66 64.81±16.55 53.77±25.52

Vgg16
1 PPs 81.78±1.60 83.38±1.94 81.82±1.62 51.78±19.02 53.82±19.40 46.63±22.77
3 PPs 82.21±3.33 82.92±3.82 81.84±3.75 51.23±19.40 54.09±19.80 45.88±23.20
10 PPs 82.08±0.90 83.39±0.92 82.13±0.87 54.69±18.05 56.48±17.56 49.89±21.51

ProtoPNets Average 85.02±2.83 85.91±2.66 84.97±2.89 56.85±20.63 63.30±17.90 53.30±23.83

models outlined therein. It is worth noticing that Table 3
shows our interpretable models to outperform traditional
CNNs from the SOTA on kidney stone classification when
evaluated on perturbed input images. Specifically, our mod-
els achieve 1.9% higher accuracy, 5.7% higher precision,
and 3.2% higher F1 scores compared to traditional models.

6. Conclusions and Future Directions
We showed that by adapting and fine tunning CNN mod-

els into ProtoPNets is possible to convert considered black-
box CNN models into interpretable ones, bringing detailed
and faithful explanations. The main visual features in the
input image that produce the activation of PPs in particular
and in the average cases per class and per dataset are able
to be extracted from the evaluated behavior of the network,
as shown in Fig. 6. This case-based reasoning approach al-
lows to generate explanations and additional activation de-
tails enabling urologists to use these models as assistance
tools for the MCA. More importantly, we showed evidence
for how to use the overall behavior of descriptors per class
in combination with UMAP projection of the behavior of
the model to identify the reasons behind misclassification,
as shown in Fig. 5. Also, the UMAP visualization illus-
trates the blending of certain classes that share similar color
and texture characteristics. To enhance cluster separability a
metric learning approach could be explored. This to penal-
izes close PPs from different classes, encourages proximity
for PPs of the same class but avoids their collapse.

Upon examining Table 3, on one hand, it is evident that
despite a minor decrease in average performance for IID
evaluations in PPs models compared to their corresponding
CNNs. This could be due to restricting the classification
to a few PPs per class, in comparison CNN models use a
few hundred features. On the other hand, PPs models con-
sistently exhibit reduced variance in performance metrics.

Additionally, these models consistently perform better in
OOD evaluations, suggesting that PPs models tend to be
more robust than their CNN counterparts. This character-
istic could be attributed to a regularization effect resulting
from measuring the similarity between the learned PPs and
the image features. PPs models inherit most of the perfor-
mance characteristics of CNNs, indicating that methods to
enhance CNN performance should also improve PPs mod-
els, thus expanding potential improvements.

In future research, the model’s reasoning and reporting
mechanisms could be refined to align more closely with the
structured lexicon employed by urologists. This could be
achieved by incorporating natural language descriptions for
the PPs identified and their descriptors to make explana-
tions more accessible to specialists and a broader range of
users.
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