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Abstract

We propose a novel approach for the challenge of design-
ing less complex yet highly effective convolutional neural
networks (CNNs) through the use of cartesian genetic pro-
gramming (CGP) via neural architecture search (NAS). Our
approach combines real-based and block-chained CNNs
representations based on CGP for optimization in the
continuous domain using multi-objective evolutionary al-
gorithms (MOEAs). Two variants are introduced that
differ in the granularity of the search space they con-
sider. The proposed algorithms were evaluated using the
non-dominated sorting genetic algorithm I (NSGA-II) in
CIFAR-100 dataset.

Experimental results demonstrate that our approach is
competitive with state-of-the-art proposals in terms of clas-
stfication performance and model complexity.

1. Introduction

Deep neural networks (DNNs), particularly convolu-
tional and recurrent neural networks, have recently gained
considerable popularity for approaching a wide variety of
problems [5,6, 1 1,21]. Regarding convolutional neural net-
works (CNNs), these are very effective computational mod-
els that have been thoroughly investigated in a wide range of
image processing and computer vision-related tasks. This
has been possible thanks to a number of factors includ-
ing availability of large amounts of data, high-performance
computing resources and research advances in the machine
learning field [12].

Neural Architecture Search (NAS) is a field that aims
at automating the design and configuration of CNN mod-
els [2]. NAS methods explore the space of CNN topologies
looking for an architecture that meets certain criteria, for in-
stance, achieving a minimum performance, or being light in
terms of the number of parameters.

Nowadays, progress in NAS research has resulted in the

identification of novel CNNs with favorable performance on
representative image classification datasets, attracting the
scientific community’s attention to this topic [10].

In this paper, we introduce two multi-objective NAS
methods based on Cartesian Genetic Programming (CGP),
which aim to design CNN architectures for image classifi-
cation. Our proposed CGP-NAS variants extend the orig-
inal CGP-NAS [4] approach by considering a block-chain
encoding. A first variant, called CGP-NASV1 is based
on fixed CNN blocks to perform the NAS. While a sec-
ond methodology, named CGP-NASV2, expands the search
space to include the hyperparameters while relaxing the
CGP-NASVI1 fixed-blocks restriction. Our proposed NAS
methods are evaluated in the context of image classifica-
tion with CNNs. Experimental results in the CIFAR-100
dataset show that both proposals are competitive against
several state-of-the-art references. The evolved CNNs ar-
chitectures have a lower number of parameters as well as
lower complexity measured in Multiply-Adds (MAdds) op-
erations in comparison to the state-of-the-art and maintain
a low classification error.

2. Continuous CGP based representation for
multi-objective NAS

The automated configuration of CNN architectures has
been mostly driven by methods that aim to optimize a single
objective, commonly, accuracy. While effective architec-
tures can be obtained by optimizing model’s performance,
such an approach has a number of limitations, the most
important is perhaps the propensity of solutions to overfit-
ting because model complexity is not restricted. Likewise,
model complexity is tied with efficiency, hence, low com-
pexity models should be preferred.

We propose the design of CNN architectures that si-
multaneously maximize model’s accuracy and minimize its
complexity. The goal is to restrict the capacity of the model
with the aim of obtaining accurate models based on archi-
tectures of moderated complexity. Compared to alternative



solutions, ours is based on a CGP representation that allows
us to operate in the real domain. This enables the usage of
off-the-shell multi-optimization techniques.

The approached problem can be formulated as one of
multi-objective optimization as follows:

Minimize F(x) = (fi(z;w* (z), f2(2))" (D
subject to: w*(x) € argmin L(w;x) ()

Where f7 is an objective associated to the classification er-
ror of the CNN architecture as defined by parameters w*
and f5 is an objective associated to model complexity mea-
sured, in agreement with previous studies, with MAdds,
as they express the total number of operations performed
in each architecture. One should note that MAdds are a
guideline for certain implementation scenarios, such as un-
der mobile settings, where the complexity must be less than
or equal to 600 MAdds [8,9]. Please note that in order to ob-
tain an estimate of classification error it is necessary to opti-
mize the weights w of the CNN architecture, so z (solution)
depends on this optimization where normally some train-
ing algorithm such as stochastic gradient descent (SDG) is
used. Two variants of our method are proposed. We first
introduce a CGP-NASV1, a variant using a block-chained
approach, see Figure 1. In each “Normal” block, an inter-
nal CGP representation itself handles the connections and
functions, in the “Reduction” blocks, a spatial reduction is
applied, this representation is re-encoded to a real-valued
representation. Therefore, the full MOEAs searching po-
tential within continuous domain is exploited.

In a second variant of CGP-NAS, we included the hyper-
parameters of the CNNs in the CGP representation, increas-
ing the flexibility of model configurations that can be find,
at the expense of increasing the search space.

2.1. CGP-NASYV1 solution representation

CGP-NASV 1 uses the block-chained encoding at the top
level, it defines an template with some layers as shown in
Figure 1. This representation connects blocks linearly, in-
cluding those with specific tasks, in CGP-NASV1 the spa-
tial reduction is performed by the pooling layers [10].

At the top-level in the block-chained, CGP-NASV1
places a CGP within a “Normal” block while the reduc-
tion blocks implements a max pooling layer. In all pool-
ing blocks, the pooling size is fixed as a 2 x 2 kernel and a
stride of 2. Figure 2 shows an example, after the last block
a global average pooling and a fully connected layer are
added. Similar guidelines were found in the state of the
art review [10, 13]. We maintained the original idea from
CGP-NAS of having two levels for representation [4]. In
CGP-NASV1, each “Normal” block from the block-chained
representation holds a CGP and it is represented as an inte-
ger vector. At the second level of representation, the in-
teger vector is encoded to a real-based vector. Equation 3
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Figure 1. The general scheme of the representation based on
chained blocks; each block internally focuses on special opera-
tions; in each normal block, for example, convolution operations
are performed; on the other hand, in the reduction blocks, methods
such as pooling are applied to spatially reduce the feature maps.
As the number of blocks increases, the number of channels will
gradually increase.

defines a range considering funcy as the current function
identifier and fumnc;,iq; as the total number of functions in
the function set. A uniform random number is generated to
represent a function within this range in the real domain.

funci  funcg +1

functotal ' functotal

Equation 4 defines a range for the function inputs in
the real domain to map connections for that node. This
operation is applied to all connections. An input value
(nodeinput) and its node number (nodeT erm) are used to
calculate this range.
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input; = |gene; x NodeTerm| (6)

In order to decode solutions from the real to the integer
domain, Equation 5 obtains the function identifier by mul-
tiplying the gene value by the total number of functions.
Moreover, Equation 6 obtains the value of every connection
by multiplying the gene value with the node number. The
equations above are based on Clegg’s work [1].

CGP-NASV1 represents CNN architectures in a divide
and conquer approach. The use of a block-chained schema
in synergy with CGP allows more control over the final ar-
chitecture,

2.2. CGP-NASYV2 representation

CGP-NASV2 proposal integrates the hyperparameters
within the solutions representation of CGP-NASV1. Thus,
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Figure 2. CGP-NASV1 using the block-chained representation

they are also evolved and optimized during the search.
Changes in CGP-NASV2 are at the block-chained “low
level” encoding. Therefore, there is a reduction in the num-
ber of functions within the function set. However, adding
the hyperparameters to the search, necessarily increases the
size of the integer vectors (and also the real-based vectors)
to which the block-chained solutions are encoded.

In a deep neural architecture, there are hyperparameters
such as the number of channels or filters and the kernel size.
In CGP, these are explicitly included in the functions set if
not considered within the solutions representation and in the
evolutionary search. Therefore, a large function set must
be defined in order to include all their possible combina-
tions. Moreover, a large function set directly increases the
CGP grid size to hold them uniformly. In CGP-NASV2, we
add the hyperparameters explicitly to the vector represent-
ing the CGP. This reduces the number of functions since
only the standard functions remain and not their hyperpa-
rameters configuration.

In Figure 3, a possible solution in CGP-NASV2 is
shown. The number of channels and kernel size are defined
as parameters associated to each block-chained. The idea is
to associate these parameters as weights to each CGP node.
Green positions at the integer vector encoding in Figure 3
represent the assigned hyperparameters within their corre-
sponding CGP block. To convert the integer vector to the
real-based vector, the same mechanism as the one used in
CGP-NASV1 is applied adding only Equations 7 and 8 to
encode and decode the hyperparameters.
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3. Experimental framework

In order to assess both proposed approaches, CGP-
NASV1 and CGP-NASV?2, first a direct performance com-
parison between the best evolved architecture based on the
achieved accuracy as the performance metric is carried out.
After, a multiple-criteria decision analysis is performed to
evaluate those evolved CNN models that better achieve
a more balanced trade-off performance considering both

objectives, accuracy and complexity. In this section, we
present the experimental settings for both experiments as
well as the considered datasets. In the next section, we
discuss the obtained results and thoroughly compared them
against the original CGP-NAS [4] proposal and several state
of the art approaches.

Table 1. CGP-NASV1 and CGP-NASV2 parameters

Parameters CGP-NASV1 CGP-NASV2
Rows 5 10
Columns 25 4
Level-Back 1 1
Mutation probability Pm =0.3

Pc = 0.9, distribution index for

Crossover probability simulated binary crossover Dsc = 20.

Population 24 24

Generations 30 30

Table 1 shows CGP-NASV1 and CGP-NASV2 configu-
ration in terms of the CGP and the evolutionary algorithm.

3.1. Comparison versus the State of the Art

Table 2 present a detailed comparison between the State
of the Art works and the proposed algorithmic approaches
CGP-NASV1 and CGP-NASV2 CIFAR-100 datasets. A to-
tal of 4 human designs, 5 NAS single-objective and 7 mutli-
objective proposals are considered for comparison plus the
original proposal CGP-NAS [4] is also included in both ta-
bles. From previous empirical assessments, it was deter-
mined that CGP-NASV?2 provided the best overall results
when compared to CGP-NASV1 and their baseline CGP-
NAS.

In comparison with other methods, particularly those de-
signed by humans, our proposal demonstrates superior per-
formance in terms of both classification error and number of
parameters in both datasets. When compared with single-
objective methods, our proposal outperforms them in terms
of classification error while showing a significant reduc-
tion in the number of parameters. It is important to note,
however, that minimizing the number of parameters is not
the primary objective of our proposal. When comparing
with multi-objective methods in terms of classification er-
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Figure 3. CGP-NASV2 block-chained representation with the hyperparameters directly encoded.

Table 2. Comparison on CIFAR-100 dataset: Classification error rate, the number of parameters and Multiply-adds (MAdds) are expressed
in millions (1 x 10%), GPU-days and GPU Hardware. The Knee solutions were selected using the Knee and boundary selection method [3].

Error

Model rate % Params MAdds GPU-Days GPU hardware
Single Objective Approaches
CGP-CNN(ConvSet) (Suganuma et al., 2020) [15] 26.7 2.04 - 13 Nvidia 1080Ti
CGP-CNN(ResSet) (Suganuma et al., 2020) [15] 25.1 343 - 10.9 Nvidia 1080Ti
Large-Scale Evolution (Real et al., 2017) [14] 23.0 40.4 - 2750 -
AE-CNN (Sun et al., 2020) [16] 20.85 54 - 36 Nvidia 1080 Ti
Genetic-CNN (Xie et al., 2017) [19] 29.03 - - 17 -
(Torabi et al., 2022) [ 1] 26.03 2.56 - - NVIDIA Tesla V100-SXM2
Multi-Objective Approaches
NSGANetV1 (Lu et al., 2020) [8] 25.17 0.2 1290 27 Nvidia 2080 Ti
MOGIG-Net (Xue et al., 2021) [20] 2471 0.7 N 4 N
EEEA-Net (Termritthikun et al., 2021) [17] 15.02 3.6 - 0.52 Nvidia RTX 2080 Ti
LF-MOGP(Liu et al., 2022) [7] 26.37 4.12 - 13 NVIDIA GeForce 3090
. . 24.23 AT
CGP-NAS(Garcia-Garcia et al., 2022) [4] (2641 + 1.41) 5.43 1581 2.1 Nvidia Titan X
. 31.47 1.06 45.70 . .
CGP-NASVI - Knee solutions (33.34 + 1.6) 0.82 + 1.12) (30.81 +9.7) 8.82 Nvidia 1080Ti
21.76 3.6 791.85 . .
CGP-NASVI 420+ 1.8) (725 +324)  (792.02 % 342.6) 8.82 Nvidia 1080Ti
20.63 5.9 827 . .
CGP-NASV2 (2249 + 1.04) (6504 1.7)  (850.74 + 476.08) 11.28 Nvidia 1080Ti
. 23.57 0.49 66.66 . .
CGP-NASV2 - Knee solutions (28.43 £ 2.20) 053 %+ 0.13) (55.66 & 19.14) 11.28 Nvidia 1080Ti

ror, the EEEA-NET [17] method shows better performance,
albeit at the cost of a higher number of parameters. In other
metrics, our proposal outperforms the other methods pre-
sented. Our proposal aims to find solutions with a favorable
trade-off between classification error and MAdds, resulting
in architectures with reduced parameters and MAdds. In
comparison with other proposals that use CGP as a method
for architectures representation, such as CGP-CNN [15],
Torabi [18], EvoApproxNas [13] and LF-MOGP [7] , our
proposal demonstrates superior performance.

Works like EvoApproxNAS [13] focuses on optimiz-
ing values at the hardware level with a multi-objective ap-
proach, keeping the CGP representation intact and adding
some block functions like bottleneck and residual inverted
to the function set while keeping the CGP properties un-
changed by only using mutations. On the other hand, none
of these proposals modifies CGP at the representation level,
instead attacking specific problems, for example by propos-
ing new operators (Torabi [18]) or mechanisms to improve
the search process (LF-MOGP [7]), which seems to be an
important component since the results shown improve com-

pared to other proposals, even though CGP-NASV2 shows
a superior performance with canonical MOEAS.

4. Conclusions

CGP is known to be a robust method for architecture
representation, and the use of real-based representation in
our proposal improves the performance, which can be at-
tributed to the relaxation of the search space and the better
use of MOEAs, which are designed to operate in a continu-
ous domain. In summary, CGP-NASV1 and CGP-NASV2
demonstrate the ability to identify solutions with a favorable
trade-off between two objectives, specifically by achieving
a lower number of MAdds when compared to other meth-
ods. It is important to note that depending on the specific
application or task at hand, different methods for select-
ing solutions, such as those presented in this work, may be
utilized to determine the most appropriate solution for the
given scenario.
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