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1. Introduction

Neural Radiance Fields (NeRF) [4] is an image-based ren-
dering technique that has attracted significant attention be-
cause of its ability to synthesize novel views with good per-
formance. NeRFs use a multi-layer perceptron to predict
the colour and density of points in space (i.e., the field of
colour and densities defined by the scene), sampling them
from the rays with origin at the centre of a viewing camera,
and that pass through the pixels of the image formed by that
camera. These points are encoded using a high-frequency
function, called positional encoding, which avoids the nat-
ural bias of NeRFs towards predicting low-frequency func-
tions [4, 5]. The predicted properties of these points are
then combined using alpha compositing to render an image.
However, the composition of points along a ray may cause
ambiguous representations that lead to further artifacts such
as aliasing. A recent variant, mip-NeRF [1], proposes the
casting of cones instead of rays in order to create volumet-
ric representations of a region of the scene. This parame-
terization involves summarizing the information of a cone
frustum using the integral of a positional encoding, which
in turn has no analytical solution. In order to deal with
this, mip-NeRF approximates this integral as the expected
value of a multi-variate Gaussian distribution parameterized
by the geometric properties of the frustum, which they call
Integrated Positional Encoding (IPE). This approximation
is reliable for nearly isotropic frustums but degrades with
highly elongated regions, which arise when dealing with
distant objects. For this reason, in this extended abstract,
we detail an alternative solution to the IPE by going back to
the task of calculating the integral of the positional encod-
ing over the cone frustums. While this approach requires
the computation of an integral with no analytic solution, we
approximate it by using a linear expansion of the integrand
around the midpoint of the cone frustum. This involves the
use of Bessel functions of the first kind, which is the mo-
tivation to call our method Bessel-NeRF, Our proposed ap-
proach, along with a concurrent work [3], is one of the first
attempts to tackle the computation of this integral and may

lead to further improvements for more challenging tasks.

2. Preliminaries
In this section, the formulation of NeRF [4] and mip-NeRf
[1] are presented, which form the basis of our method.

2.1. Neural Radiance Fields

A NeRF learns an implicit representation of a 3D scene
from a set of 2D input images, taking as input a point
x ∈ R3 and a viewing direction d̂ ∈ S2, where S2 is the
unit sphere, and getting the corresponding colour c ∈ R3

and density σ ∈ [0,+∞) through a neural network f with
parameters Θ, such that

(c, σ) = f(x, d̂; Θ) . (1)

In order to induce high-frequency features, a positional en-
coding γ : R → R2L acting as a map to a higher dimen-
sional space with high-frequency functions is used [4,5]. In
particular, NeRF uses the positional encoding

γ(x) =
[
sin(20x), cos(20x), . . . ,

sin(2L−1x), cos(2L−1x)
]⊤
,

(2)

where γ is applied to each coordinate of x and each compo-
nent of d̂ independently.

NeRF uses a sampling strategy consisting in taking ran-
dom points along the rays that pass through the pixels of
each image. This ray is represented by r(t) = td + o,
where o is the camera centre position and d is the vector
that goes from o to the pixel in the image plane. The ray is
divided intoN intervals and the points r(ti) are drawn from
a uniform distribution over each interval, such that

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tN +

i

N
(tf − tn)

]
, (3)

where tn and tf are the near and far planes. In this sense,
the colour and density of each point over the ray is obtained
by (ci, σi) = f(γ(r(ti)), γ(d/∥d∥); Θ).
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Finally, the pixel colour Ĉ(r) is obtained using numeri-
cal quadrature

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi)) , (4)

Ti = exp

−
i−1∑
j=1

σjδj

 , (5)

where δi = ti+1 − ti. The sampling is carried out hierar-
chically by using coarse Ĉc and fine Ĉf samplings, where
the 3D points in the latter are drawn from the PDF formed
by the weights of the density values of the coarse sampling.
The loss is then the combination of the mean-squared error
of the coarse and fine renderings for all rays r ∈ R, i.e.,

L =
∑
r∈R

[
∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)− C(r)∥22

]
. (6)

2.2. Mip-NeRF

Barron et al. [1] noticed that the use of a ray per pixel may
lead to some artifacts (e.g., aliasing and blurring) that are
caused by ambiguous point features at different views or
scales. They proposed mip-NeRF, which is similar to NeRF
but it uses cone tracing instead of rays. This change has
the direct consequence of replacing ray intervals by conical
frustums F (d,o, ρ̇, ti, ti+1), where ρ̇ is the radius of the
circular section of the cone at the image plane. This leads
to the need for a new positional encoding that summarizes
the function in Eq. (2) over the region defined by the frus-
tum. The proposed formulation, called integrated positional
encoding (IPE), is given by

γI(d,o, ρ̇, ti, ti+1) =

∫∫∫
F
γ(x)dV∫∫∫
F
dV

. (7)

Since the integral in the numerator of Eq. (7) has no
closed-form solution, mip-NeRF proposes to approximate
it by considering the conic frustums as multivariate Gaus-
sians, obtaining the relation

γ∗(µ,Σ) = Ex∼N (Pµ,PΣP⊤) [γ(x)]

=

[
sin(Pµ) ◦ exp(−(1/2)diag(PΣP⊤))
cos(Pµ) ◦ exp(−(1/2)diag(PΣP⊤))

]
,

(8)

where µ = o + µtd is the centre of the Gaussian for a
frustum defined by o and d with mean distance along the
ray µt, Σ is the covariance matrix, ◦ denotes element-wise
product and

P =

1 0 0 2 0 0 2L−1 0 0
0 1 0 0 2 0 . . . 0 2L−1 0
0 0 1 0 0 2 0 0 2L−1

⊤

. (9)

This formulation proved to be accurate for bounded scenes
where a central object is the main part of the scene and no
background information is present. However, the approxi-
mation gets worse for highly elongated frustums, as noted
by Barron et al. [2].

3. Bessel-NeRF
We now turn our attention to the solution of Eq. (7). First,
we consider a coordinate system [x′, y′, z′]⊤ with the z′ axis
aligned to d and a rotation matrix R, such that its transform
to the world coordinate system is given by

[x, y, z]⊤ = ζ(x′, y′, z′) = R[x′, y′, z′]⊤ + o . (10)

Similar to mip-NeRF [1], we use an axis-aligned
cone parameterization [x′, y′, z′]⊤ = ϕ(ρ, t, θ) =
[ρt cos θ, ρt sin θ, t]⊤ for θ ∈ [0, 2π) , t ≥ 0 and 0 ≤ ρ ≤ ρ̇
to have our final transform to the Cartesian space

[x, y, z]⊤ = ξ(ρ, t, θ) = (ζ ◦ ϕ)(ρ, t, θ)
= R[ρt cos θ, ρt sin θ, t]⊤ + o .

(11)

Then, we obtain the volumen of the cone frustum by solving
the integral in the denominator of Eq. (7), i.e.,

∫∫∫
F

dV =

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

det(Jξ)dθdρdt

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

det(RJϕ)dθdρdt

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

det(R) det(Jϕ)dθdρdt

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

ρt2dθdρdt

=
1

3
πρ̇2(t3i+1 − t3i ) ,

(12)

where |Jf | is the determinant of the Jacobian matrix of f
and the determinant of R is 1 since it is a rotation matrix.

In order to solve the integral in the numerator of Eq. (7),
we use the same parameterization in Eq. (11) and consider
the sine function sin(2lx) of the positional encoding in
Eq. (2) for the l-th frequency. Then, the numerator of the
IPE for the k-th coordinate is calculated as

∫∫∫
F

sin(2lxk)dV

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

sin(2lξ(ρ, t, θ)k)ρt
2dθdρdt .

(13)



Now we proceed to solve the IPE for the k-th coordinate.
Substituting and expanding Eq. (11) in Eq. (13) and having
rij as the elements of the rotation matrix R, we obtain

γI(R,o, ρ̇, ti, ti+1)k =

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

sin(2l(rk1ρt cos θ+

rk2ρt sin θ + rk3t+ ok))ρt
2dθdρdt .

(14)

Then, by using the trigonometric identity a cos θ+b sin θ =√
a2 + b2 cos(θ+arctan (−b/a)), we can write the Eq. (14)

as

γIk

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

sin(A cos(θ +B) + C)ρt2dθdρdt

(15)

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

sin(A cos θ + C)ρt2dθdρdt (16)

=

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

sin(A cos θ) cos(C)ρt2dθdρdt

+

∫ ti+1

ti

∫ ρ̇

0

∫ π

−π

cos(A cos θ) sin(C)ρt2dθdρdt ,

(17)

where

A = 2lρt
√
r2k1 + r2k2 (18)

B = arctan(−rk2/rk1) (19)

C = 2l(rk3t+ ok) , (20)

and in Eq. (16) we used the fact that the integral over a
full period of cos(θ + ε) is the same for any value of ε.
We omit the arguments of γI for clarity. It is noted that∫ π/2

0
sin(A cos θ)dθ = −

∫ π

π/2
sin(A cos θ)dθ, and since

sin(A cos θ) is even, the first part of Eq. (17) is 0. Given
that the second part of Eq. (17) is also even, we can sim-
plify it to

γIk = 2

∫ ti+1

ti

∫ ρ̇

0

∫ π

0

cos(A cos θ) sin(C)ρt2dθdρdt .

(21)
In order to solve Eq. (21), we need to use the Bessel func-

tion of first kind Jν(x), which can be defined in its integral
form as

Jν(x) =
1

π

∫ π

0

cos(ντ − x cos τ)dτ . (22)

Using this relation, Eq. (21) is reduced to

γIk = 2π

∫ ti+1

ti

∫ ρ̇

0

J0(A) sin(C)ρt
2dρdt . (23)

We now rewrite Eq. (23) as

γIk = 2π

∫ ti+1

ti

∫ ρ̇

0

J0(A
′ρ) sin(C)ρt2dρdt (24)

A′ = A/ρ = 2lt
√
r2k1 + r2k2 . (25)

The integral in Eq. (24) can be solved using the relation∫ a

0
J0(bu)udu = (a/b)J1(ab). Then

γIk = 2πρ̇

∫ ti+1

ti

J1 (A
′ρ̇)

A′ sin(C)t2dt . (26)

Substituting Eqs. (20) and (25) in Eq. (26)

γIk = λk

∫ ti+1

ti

J1 (αkt) sin(βkt+ ψk)tdt (27)

λk =
2πρ̇

2l
√
r2k1 + r2k2

(28)

αk = 2lρ̇
√
r2k1 + r2k2 (29)

βk = 2lrk3 (30)

ψk = 2lok . (31)

The integral in Eq. (27) has no closed-form solution.
Therefore, we linearly approximate the integrand f(t) =
J1(αkt) sin(βkt + ψk)t around the midpoint µi = (ti +
ti+1)/2

f(t) ≈ J1(αkµi) sin(βkµi+ψk)µi+
df

dt
(µi)(t−µi) . (32)

We can rewrite the integration limits of Eq. (27) as ti =
µi − δi/2 and ti+1 = µi + δi/2. By integrating Eq. (32)
with these integration limits, it can be seen that the linear
term df

dt (µi)(t − µi) vanishes. Our approximation of the
IPE for the k-th coordinate is then

γ∗I k = λkJ1 (αkµi) sin(βkµi + ψk)µiδi . (33)

We call our approximation Bessel Integrated Positional En-
coding (BIPE) and forms the basis of Bessel-NeRF. Simi-
larly, the BIPE for the cosine function is

γ∗I k = λkJ1 (αkµi) cos(βkµi + ψk)µiδi . (34)

Finally, we define the vectors



η = P
(
R◦2

:,1 +R◦2
:,2

)◦1/2
(35)

λ = 2πρ̇(η)◦−1 (36)
α = ρ̇η (37)
β = R:,3 , (38)

where R:,j is the j-th column of R and (·)◦n refers to the
element-wise n-th power, to combine the Eqs. (33) and (34)
into our final BIPE feature

γ∗
I = µiδi

[
λ ◦ J1 (µiα) ◦ sin(P(µiβ + o))
λ ◦ J1 (µiα) ◦ cos(P(µiβ + o))

]
. (39)

4. Conclusion and Future Work
In this extended abstract, we present Bessel-NeRF, an

alternative parameterisation of mip-NeRF that goes back to
the task of integrating the positional encoding over a coni-
cal frustum. This is a work in progress and the results pre-
sented are the outcomes of the theoretical formulation of a
new positional encoding. The next steps in this work are to
implement Bessel-NeRF and compare it against mip-NeRF
and other formulations.
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