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Abstract

GPS-based aerial localisation presents a challenge for
Unmanned Aerial Vehicles (UAVs) due to signal loss caused
by weather conditions. As a result, vision-based methods
have been developed to address this issue using the cam-
eras onboard UAVs. The main challenge is to achieve UAV
localisation during a flight mission using a erial images and
Convolutional Neural Networks (CNNs). To solve this, we
propose an aerial localisation methodology based on the
sub-mapping concept using continual learning and a multi-
model approach. We evaluate and compare our results with
ORB-SLAM2, keyframe searching using colour histogram,
and with a single model. Additionally, we show that our
approach can find the corresponding sub-map and get the
camera localisation from a single aerial image with an av-
erage accuracy of 0.77 and a processing speed of 69 fps.

1. Introduction

Aerial localisation is a challenge for UAVs that require
GPS coordinates to carry out flight missions in outdoor sce-
narios. The dependence on GPS devices often impedes the
acquisition of pose estimation, leading to the development
of several vision-based methods. These methods include
feature matching [6], Visual Odometry (VO) [5, 10], Si-
multaneous Localisation and Mapping (SLAM) [4,12], and
deep learning [2,3,11]. For the latter, the PoseNet architec-
ture proposed by [8] is used to regress the camera pose and
estimate the UAV position using a single image. However,
training a model using a large dataset can be computation-
ally expensive and time-consuming. To tackle this issue, an
alternative approach is to use continual learning methods to
train a CNN with small dataset samples, thereby avoiding
catastrophic forgetting when new information arrives.

The continual learning method known as latent replay
can prove helpful in training models for flight missions [1],

Figure 1. Hierarchical continual learning for aerial localisation
consists of three stages: 1) Dataset generation with poses assigned
as classes; 2) Continual learning using MobileNet and aerial im-
ages with flight coordinates and InceptionV4 using keyframes for
sub-map recognition; 3) Multi-model testing using the sub-map
searching.

particularly in scenarios with limited resources or unpre-
dictable environments [7, 14, 15]. Using this method, CNN
models can adapt and improve without re-training, contin-
ually updating the model with new information and prior
knowledge. This method involves storing the data patterns
in external memory and repeating subsequently with incom-
ing data [9, 13]. Moreover, dividing the area into different
sections can be advantageous, allowing a more focused and
targeted approach to learning.

Motivated by the above, we propose a novel methodol-
ogy for hierarchical learning using two networks that em-
ploy a latent replay strategy. Firstly, sub-maps are gen-
erated throughout the UAV’s trajectory, and representative
keyframes are extracted for each sub-map to train the first
network. Subsequently, the second network is trained in a
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multi-model fashion, with each model representing one sub-
map and containing flight coordinates information. Thus,
camera poses information is obtained by identifying the rel-
evant sub-map from a testing dataset and loading the cor-
responding model. Figure 1 presents an overview of our
proposed framework.

2. Methodology
We use two deep network architectures for hierarchi-

cal continual learning methodology: MobileNet and Incep-
tionV4. Firstly, aerial images were collected from a monoc-
ular camera mounted on the UAV associated with GPS co-
ordinates during the flight. Subsequently, we generated a
set of keyframes for each segment of the trajectory, which
we consider as sub-maps of the entire path. Finally, we con-
tinually trained the networks to produce a model containing
pose information and another containing sub-map informa-
tion.

Dataset Generation: The dataset was conducted in two
stages: capturing aerial images with GPS coordinates and
keyframes representing sub-maps. The latter was facilitated
through the Robotic Operating System (ROS), which en-
abled communication with the drone to get image streams
and GPS data to our Ground Control Station (GCS). First,
we carried out four flight missions for image acquisition
with a resolution of 128 × 128, and GPS coordinates con-
verted to metres. Afterwards, we generated small samples
with data augmentation of flight coordinates divided into
classes, resulting in around 50 classes for each trajectory.
Additionally, we defined sub-maps using information from
five flight coordinates, creating a new sub-map when the
drone travels a distance of 50 metres. Finally, we stored
keyframes for each sub-map and used them to train the In-
ceptionV4 network. The information in these keyframes de-
termines the trajectory zone to which they belong.

Figure 2 provides a diagram illustrating creating sub-
maps and storing keyframes. The diagram depicts sub-
maps partitioning, each consisting of five flight coordinates,
and the storage of three keyframes per sub-map. These
keyframes correspond to sub-map beginning, intermediate
and end, corresponding to classes 1, 3, and 5.

Continual Learning: We adopted the continual learning
strategy known as a latent replay to train MobileNet as in
[9]. This strategy enables us to train the network on the fly
while preserving essential patterns in external memory in
the pool6 layer, with each pattern set representing distinct
classes. Combining new data with old patterns rejuvenates
the previously learned weights and consolidates the learning
process. Furthermore, we restrict the number of classes to
50 to prevent memory saturation and avoid catastrophic for-

Figure 2. General diagram for the sub-maps creation and
keyframes storage. The flight trajectory is shown in red, circles
express GPS coordinates, keyframes are in red squares, and sub-
maps are in yellow rectangles.

getting of the first classes. Thus, we used MobileNet to train
the aerial images with the five coordinates of each sub-map
to create the multi-models while we stored the keyframes.

Afterwards, we train InceptionV4 using the stored
keyframes and their labels to determine the corresponding
sub-map. The training is designed to learn an input image,
keeping the features in a vector. Thus, if a new keyframe
of the same class arrives, we update the weights in a tem-
poral vector and merge them with the previous ones. Oth-
erwise, the network assigns new features in a new index
and expands the features vector with information from both
classes. At the end of the training, we concatenate the vector
with the temporal vector to join all keyframe features into
a single. Figure 3 shows the MobileNet and InceptionV4
training using aerial images and keyframes.

Figure 3. Continual learning with our hierarchical approach. Mo-
bileNet is trained using aerial images with five flight coordinates,
creating one model for each sub-map. Next, InceptionV4 is trained
using the keyframes generated in each sub-map.

This way, we have 47 flight coordinates for trajectory
1, 50 for the second and third trajectories, and 52 for the
last trajectory, representing the classes along the entire path.
The length of the traversed trajectory is 0.53 km for trajec-
tory 1, 1.4 km for the second, 2.4 for the third, and 2.9 km
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for the last. In addition, we stored 27 keyframes for trajec-
tory 1, 30 for trajectories 2 and 3, and 52 for the last one.

3. Experiments and Results

We conducted two experiments to evaluate the effec-
tiveness of our hierarchical approach to aerial localisation.
The first experiment aimed to identify the corresponding
sub-map of the aerial image using the InceptionV4 and a
colour histogram-based method. In the second experiment,
we used the hierarchical scheme to determine the corre-
sponding sub-map label and obtain the pose of an input im-
age. For the sake of comparison, we evaluate our results
against a single model, ORB-SLAM2 localisation module,
and keyframe searching using the colour histogram.

Sub-Maps Results: We trained InceptionV4 on the fly
using keyframes generated during sub-maps creation with
indexes assigned as labels. Thus, we evaluate the model
into 4 test flights following a trajectory similar to the train-
ing data. We determined the number of features correspond-
ing to the nearest keyframe and returned the label with the
highest similarity of features corresponding to the sub-map.
Furthermore, we compared the performance of our sub-map
search method with a colour-based approach. For the latter,
we calculated the colour histogram of each test image and
compared it to the keyframes using the chi2 metric. A low
chi2 value indicates higher similarity. Results of our evalu-
ation are presented in Table 1, which shows the number of
correct keyframes and accuracy scores obtained using In-
ceptionV4 and the colour histogram method, respectively.

Table 1. Accuracy results with the test dataset using a colour
histogram-based approach and InceptionV4 network to find the
keyframes and determine the sub-map. The information in bold
shows the best result.

Traj. SubMap Histogram InceptionV4
Kfs. Acc. Kfs. Acc.

1 9 87 0.6041 117 0.8125
2 10 65 0.5555 84 0.7179
3 10 56 0.6666 60 0.7142
4 10 310 0.5107 467 0.7693

Hierarchical Learning Results For this experiment, we
conducted hierarchical learning as illustrated in Figure 4.
First, we input the image into the InceptionV4 network,
which produces the corresponding sub-map index. Next,
we load the MobileNet model of the identified sub-map
and evaluate the image, resulting in one of the five learned
classes. We then compared our results with those obtained
through a single learning model, the ORB-SLAM2 locali-

sation module, and a keyframe search approach based on
colour histograms for aerial localisation.

The single learning model was developed using the con-
tinual learning approach with a latent replay strategy. Nev-
ertheless, we learned and updated all classes in a single
model instead of having separate models for each sub-map.
In the ORB-SLAM2 re-localisation module, we create the
map using the training dataset and save the image poses in
a text file. Next, we use the test dataset, deactivate mapping
and use feature matching to re-localise the test images. A
test image with the same descriptors as a keyframe is au-
tomatically re-localised in the map. We also compute the
distance between the test frame and the closest keyframe
to recover the coordinate corresponding to that keyframe.
Finally, we used the colour histogram approach with our
hierarchical methodology to evaluate the test dataset.

Table 2 displays the comparison results for an aerial lo-
calisation task, presenting information on the poses along
the entire path, the number of testing images, and the accu-
racy of each method. Accuracy is the number of correctly
re-localised images from acquiring the sub-map to get the
corresponding pose. Our methodology produces satisfac-
tory localisation results, successfully re-localising more im-
ages on the first two trajectories with an average accuracy
of 0.74. In contrast, ORB-SLAM2 performs better on the
last two trajectories with an average accuracy of 0.81. On
the other hand, a single model gets a maximum accuracy
of 0.43, and using a keyframe search system with a colour
histogram achieves an average accuracy of 0.47.

The comparison indicates that our methodology per-
forms better than the SLAM system in the first two trajec-
tories, while the latter obtains more poses in the last two.
In contrast, a single model approach confirms our assump-
tions about catastrophic forgetting of the initial data, and
even with a continual learning strategy, the network loses
knowledge with increasing information. A keyframe search
system with a colour histogram and feature extraction may
not be advantageous, especially in complex trajectories, and
a multi-model-based system has the potential to split the
learning of poses into different models. Additionally, the
SLAM system’s performance drops in complicated scenar-
ios lacking descriptors or with a repetitive pattern, such as
Trajectories 1 and 2.

The final result presents the camera poses obtained using
a testing trajectory with each method. Thus, if an aerial
image is re-localised, we get the sub-map and its pose close
to the ground truth. The trajectories’ results and the poses
recovered using each method are shown in Figure 5. We can
see that there are holes in the trajectories, and this is because
the process can’t obtain the correct location in that zone.
In addition, we present the processing speed in fps of each
method in Table 3, where ORB-SLAM2 obtains a higher
speed but not so far from that obtained with our approach.
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Figure 4. Hierarchical aerial localisation is achieved through a multi-stage evaluation process. Firstly, we use the InceptionV4 network
to identify the corresponding sub-map for each image. Then, we load the MobileNet model with information on the 5 flight coordinates
specific to that sub-map. Finally, the model evaluates the aerial image to determine the camera pose and obtain the localisation.

Table 2. Accuracy results for aerial re-localisation using a single learning model, the ORB-SLAM2 localisation module, and a keyframe
search approach based on colour histograms. The information in bold shows the best result.

Trajectory Poses Images Single Model ORB-SLAM2 Histrograms Hierarchical
1 47 144 0.2500 0.1041 0.3055 0.7083
2 50 117 0.2564 0.5897 0.3076 0.7777
3 50 84 0.2976 0.9166 0.6071 0.8928
4 52 607 0.4382 0.7166 0.6690 0.7001

Figure 5. Re-localisation results: Ground-Truth was established
using the training trajectory, and circles represent the recovered
poses for each evaluated method. The first column shows the eval-
uation using a single model, the second with ORB-SLAM2, the
third using a histogram colour search, and the last with our ap-
proach.

Finally, we have counted the images used to retrieve the
poses in Table 4, in which our method achieves the high-
est number of images correctly localised. However, ORB-
SLAM2 performs better in re-localising for trajectories 3
and 4 but not for the earlier ones. With the aerial images
captured, our methodology could be helpful as a backup lo-
calisation method in case the GPS signal is lost.

Table 3. Processing speed in fps with each comparison method.
The information in bold shows the best result.

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
Single model 55.30 48.28 55.64 62.76
ORB-SLAM2 85.47 83.33 92.57 89.28

Histogram 59.63 62.40 64.80 61.87
Hierarchical 77.44 68.52 67.63 63.37

Table 4. Images correctly located using each method on the 4 flight
paths. The information in bold shows the best result.

Approach Traj. 1 Traj. 2 Traj. 3 Traj. 4
Single model 36 30 25 225
ORB-SLAM2 15 69 77 435

Histogram 44 36 51 266
Hierarchical 102 91 75 425

4. Conclusion

We presented a hierarchical continual learning approach
to the aerial localisation problem using a single image cap-
tured by a UAV. Our methodology utilises two networks to
identify a sub-map that best represents the trajectory and
a multi-model process for each sub-map divided into the
entire path with information on the flight coordinates. We
continuously trained the MobileNet and InceptionV4 net-
works during a flight mission using the latent replay strat-
egy while storing representative keyframes of the sub-map
to determine which model to load. As a result, our approach
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outperforms the localisation results obtained with single
model training and a methodology based on the colour his-
togram. Additionally, our approach provides localisation
results comparable to those obtained with ORB-SLAM. We
have demonstrated this approach as a backup localisation
method for UAVs with an average accuracy of 0.77 and a
performance speed of 69 fps.
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