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Abstract

The retinal vessel network studied through fundus im-
ages contributes to the diagnosis of multiple diseases not
only found in the eye. The segmentation of this system may
help the specialized task of analyzing these images by as-
sisting the quantification of morphological characteristics.
Due to its relevance, several Deep Learning-based architec-
tures have been tested for addressing this problem automat-
ically. However, the impact of the loss function selection on
the segmentation of the intricate retinal blood vessel system
hasn’t been evaluated. In this work, we present the compar-
ison of the loss functions Binary Cross Entropy, Dice, Tver-
sky, and Combo loss using the SA-UNet with the DRIVE
dataset. Their performance is assessed using four metrics:
AUC, mean squared error, dice score, and Hausdorff dis-
tance. The second part, it is also compared four segmen-
tation architectures: UNet, SA-UNet, Attention UNet, and
Nested UNets.

1. Introduction
Utilizing eye fundus images is relevant for the identifica-

tion of not only eye diseases but also systemic diseases since
the retina is susceptible to changes in the circulation of the
brain [1]. The study of retinal vessel structure through non-
invasive techniques, assists the identification of cardiovas-
cular diseases, hypertension, stroke, and retinopathies [7].
Diabetic retinopathy is present in have 80% to 85% of the
patients that have diabetes for more than 10 years [11] and
the gold standard for detecting it is the fundus imaging [5].

The examination of the image and study of morpho-
logical changes in this structure is a specialized task. As
a consequence of the process of projecting the 3-D semi-
transparent retinal tissue into a 2-D imaging plane [1], the
evaluation of the image faces challenges. Quantification of
the structure analysis (symmetry, width, length), to under-
stand the pathological changes produced, is made through
image processing and segmentation of the vessels [2].

Segmentation of the retinal vascular network has been

addressed using deep learning with several architectures.
There are multiple based on the UNet structure: SA-UNet
[2], Residual UNet, Recurrent UNet, Attention-UNet [8],
Generative Adversarial Networks [12], between others. At-
tention modules have been added to the principal architec-
tures since this mechanism tells where to focus [14], which
may help in the segmentation of intricate patterns such as
the vessel network.

Besides the variety of architectures that exist for seg-
mentation, the learning algorithm is instigated by the loss
function, which should be selected depending on the ob-
jective [3]. For evaluating segmentation results there also
exist multiple metrics which need to be selected consider-
ing the purpose and sensitivity of each one. The impact in
the segmentation and evaluation of the quality by choosing
loss functions and metrics is a challenge in deep learning
segmentation.

Although comparisons had been made between the per-
formance of architectures in retinal vessel segmentation
[4, 12], the effect of loss function selection and metric
hasn’t been reported to our knowledge. In this study, we
compare the loss function using different metrics using the
SA-UNet which was designed for this task and has as a base
the UNet. Also, some of the most relevant architectures are
compared.

The paper contains the following order of sections. The
section 2 contains the description of the dataset, loss func-
tions, metrics, and deep learning structures used for each
experiment. The results are presented in section 3. The
conclusion and future work are presented in the section 4.

2. Data and methods

The technical contribution of this work is the evaluation
of the impact of four loss functions with four metrics on the
retinal vessel segmentation using SA-UNet. Al so the com-
parison of four deep learning segmentation architectures us-
ing the same loss function.
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2.1. Dataset

The images used in this work come from a retinal ves-
sel segmentation dataset: Digital Retinal Images for Ves-
sel Extraction (DRIVE). Contains 40 images, of which 7
are abnormal pathology cases. It was used the version with
data augmentation that includes random rotation, Gaussian
noise, color jittering, and flips (horizontal, vertical, and di-
agonal) from the SA-UNet paper [2]. This incremented the
number of training images from 20 to 256 images. An ex-
ample of the DRIVE dataset is displayed in figure 1, there is
the fundus image and the binary ground truth with the labels
of the blood vessels.

(a) Test image (b) Ground truth

Figure 1: Sample images for the DRIVE dataset

2.2. Segmentation metrics

For evaluating the quality of the segmentation, there are
multiple metrics that can be used depending on the data and
the segmentation task [13]. For the first part of loss func-
tion comparison, four metrics are used: the Dice coefficient,
the area under the ROC curve (AUC), means square error,
and Hausdorff distance (HD). The Dice coefficient com-
putes the pair-wise overlap between the segmentation and
ground truth: DICE = 2|Segmenation ∩ Ground Truth|

|Segmenation|+|Ground Truth| . The ROC
curve is the plot of the true positive rate (TPR) and the false
positive rate (FPR), the AUC was designed as a measure
of accuracy. The mean square error (MSE) is a probabilis-
tic measure. The HD is a spatial-based metric measured in
voxel size and measures the distance between the ground
truth and the segmentation.

2.3. Loss functions

The loss functions help us in the mathematical repre-
sentation of our segmentation objectives in Deep Learn-
ing for making it accurate and faster [3]. Four loss func-
tions were evaluated: Dice, Tversky, Binary Cross Entropy,
and Combo loss. The Dice loss function is based on the
dice coefficient, explained in the previous section, and min-
imizes the similarity between the ground truth and the seg-
mentation. The Tversky loss is based on the Dice loss and
achieves a better balance between precision and recall, em-
phasizing the false negatives [6]. The Binary Cross Entropy
loss measures the dissimilarity between two probability dis-
tributions. The Combo loss is a weighted summation be-

tween the Dice loss and a variation of the cross-entropy;
this brings the advantages from both losses [3].

2.4. Deep Learning architectures

For the first part of loss functions comparison with multi-
ple metrics, we selected Spatial Attention UNet (SA-UNet)
proposed by Guo et al. [2]. This adds a spatial atten-
tion module between the encoder and decoder. It also has
dropout convolutional blocks. For the second part four deep
learning models for comparison. Besides SA-UNet it was
also selected Attention-UNet, Nested UNet, and the base
architecture which is the UNet proposed by Ronneberger
et al. [10]. Attention UNet was proposed by Oktay et al.
[9], it adds an Attention Gate between the union of the skip
connection and the decoder. The UNet++ is a nested UNet
architecture where the encoder and decoder are connected
through a series of nested dense convolutional blocks [15].
For the experiments 100, epochs with early stopping were
used.

3. Results

The first part consists of the comparison of the SA-UNet
using four loss functions and four metrics. The summary
of the experiments can be found on the table 1, it has the
average metric for each experiment. The arrow ↑ represents
that the metric is better when is bigger, while the arrow ↓
means that is better when is close to 0. We can see that
although they were trained for the same number of epochs,
the metrics are different depending on the loss function.
If we would base the performance on only one metric, we
could ignore the overall performance. For example, in the
case of AUC, the loss function that had the best performance
was the Tversky loss however, looking at the other metrics
the Combo loss had the best one with respect to the others.

Table 1: Results of SA-UNet using multiple loss functions
and metrics (average).

Loss functions AUC ↑ MSE ↓ Hausdorff
distance ↓

Dice
score ↑

Dice 0.9431 0.0565 9.3039 0.7327
Tversky 0.9442 0.0692 10.1913 0.6951
Binary Cross
Entropy 0.9197 0.1339 21.0970 0.5470

Combo 0.9335 0.0355 7.9129 0.8059

The visual results can be seen in figure 2, the same image
is compared against the four loss functions. The image 2a
shows the ground truth and the rest of the images are the
segmentation results with a different loss function.

For the second part, four segmentation architectures
were evaluated (UNet, SA-UNet, Attention UNet, and
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(a) Ground truth (b) BCE (c) Dice

(d) Tversky (e) Combo

Figure 2: Comparison of loss functions performance using
SA-UNet.

Nested UNets). The results were evaluated using the Haus-
dorff distance ↓ and the Dice score ↑. The summary of the
results can be seen in the boxplots from figure 3. Regard-
ing the Attention UNet had the best average and distribu-
tion for the dice score results. The results for the Hausdorff
distance are more compact meaning that they are less vari-
able. The SA-UNet had the smaller average from the four
architectures, which means that the distance between the
segmentation and the ground truth was smaller and had bet-
ter performance. The other three architectures have similar
results.

For determining if the results were statistically different,
first a Friedman test was made between the segmentation re-
sults of the four architectures. This showed that they were.
For determining between which ones, a Wilcoxon test was
made between each architecture. It showed that they were
all significantly different from each other. The results ob-
tained for these tests are shown in table 2.

(a) Dice score (b) Hausdorff distance

Figure 3: Results from Deep Leaning based architectures
comparison

The visual segmentation results for each Deep Learning-
based architecture are shown in figure 4. The ground truth
is compared against the segmentation prediction. The same
case is used for comparison. For these experiments it can be
seen that in all models fine blood vessels are still missing,
this could have been improved by adding more epochs.

Table 2: Results of Friedman and Wilcoxon statistical tests
for the segmentation results against each architecture.

Test Statistic pvalue
Friedman 32.5 8.764248e-08
AUNet vs UNet 0.0 8.857458e-05
AUNet vs SA-UNet 1.0 1.033465e-04
AUNet vs Nested UNets 0.0 8.857458e-05
UNet vs Nested UNets 45.0 2.509351e-02
UNet vs SA-UNet 4.0 1.628558e-04
Nested UNets vs SA-UNet 9.0 3.384547e-04

(a) Ground truth (b) Unet (c) SA-UNet

(d) Attention
UNet

(e) Nested UNets

Figure 4: Comparison of architectures segmentation perfor-
mance.

4. Conclusion and future work
We observed that there was a significant impact in the

selection of the loss function, this was reflected in the aver-
age of each metric. Considering the overall performance of
the metrics, the best loss function was the Combo. The con-
clusion could have been different if it had only been deter-
mined by one metric. Therefore the combination of the loss
function and metric needs to be considered. For the Deep
Leaning based architecture comparison, although they all
were UNet based they had different results which were also
reflected in the statistical tests. For the Dice score, it was
the Attention Unet that had better performance, however in
the Hausdorff distance it was better than the SA-Unet, this
shows the sensitivity of the metrics and how it should be
globally evaluated.
For future work and a better understanding of the impact on
retinal vessel segmentation, a comparison between the four
loss functions and four architectures should be done. The
use of other datasets could also bring more comprehensive
studies.
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