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Abstract

The understanding of global climate change, agricul-

ture resilience, and deforestation control rely on the timely

observations of the Land Use and Land Cover Change

(LULCC). Recently, some deep learning (DL) methods have

been adapted to make an automatic classification of Land

Cover (LC) for one season-homogeneous data. However,

most of these DL models can not apply effectively to real-

world data. i.e. a large number of classes, multi-seasonal

data, diverse climate regions, high imbalance label dataset,

and medium-spatial resolution. In this work, we present a

novel lightweight (only 89k parameters) Convolution Neu-

ral Network (ConvNet) to handle these problems in annual

LC classification and analysis for the Jalisco region which

is located in central-western Mexico. Our embedded analy-

sis anticipates the limited performance in some classes and

gives us the opportunity to group the most similar, as a re-

sult, the test accuracy performance increase from 73% to

83%. We hope that this research helps other regional groups

with limited data or computational resources to attain the

United Nations Sustainable Development Goal (SDG) con-

cerning “Life on Land” and plan effectively the land use,

conservation areas, or ecosystem services.

1. Introduction

The diversity in climatic conditions and vegetation pose

different obstacles to the annual monitoring land cover us-

ing remote sensing [22]. Mexico is considered a mega-

diverse country [17] due to its location in a transition zone

between Nearctic and Neotropic regions making it more dif-

ficult for land use classification and monitoring. In recent

years, Deep Learning (DL) outpacing the other machine

learning techniques remote sensing for the LULC classifica-

tion [23]. However, there are still big challenges to solve for

real-world data, i.e. highly imbalanced and heterogeneous

datasets, big-size areas for classification (don’t take into ac-

count the Minimum Mapping Unit (MMU)), low spatial-

resolution images, noisy labels and multi-channel images.

In this scenario, it is difficult to handle the limited GPU

memory for multiple input channels or use the most com-

mon classification architectures such as ResNet, Xception

or MobileNet due to the tiny input size (3×3 pixels) re-

quired to detect changes on the Minimum Mapping Unit.

In this context, we present a novel lightweight (only 89k

parameters) Convolution Neural Network (ConvNet) . The

numerical results in the test set confirm that this strategy

achieves an overall accuracy of 83%.

2. Related work

Many previous works collected in [2, 8, 16, 21] have

addressed the problem on LC classification only for 2-4

classes with outstanding results up to 90% overall accuracy.

However, is not easy to compare those works with or work

due to the following: i) Jalisco data is more diverse, not only

with more classes but also, with more diverse types of LC

and LU over the region affecting the class separability [22].

ii) We use 30 m ground sampling distance. iii) The base

map was semiautomatic-labeled using [15] with an overall

accuracy of 89.48%. iv) We use very small input size based

on the MMU 3×3 with a large number of channels. v) The

multi-seasonal data from Landsat 8. vi) Most LC datasets

were created with big homogeneous generic areas [1, 22].

A fair comparison to our data, would be [5], due to their

12 of classes, study area, and use of multi-season images

with an overall accuracy of 76 %. According to [13] the

accuracy assessment, the tropical evergreen forest was very

accurately classified with an accuracy of > 75 %.

3. Study area and data

The study area is Jalisco which is located in central-

western Mexico (see Figure 1), with an area of 80, 200km2.

The climates are temperate, tropical rainy and dry [19] with

altitudes from 0 to 4,300 meters above sea level.

We use the land use and land cover (LULC) map labels



Figure 1. Regional study area: Jalisco, Mexico.

from [3] which is public. This map was developed jointly by

the National Forestry Commission of Mexico (CONAFOR)

and the Secretarı́a de Medio Ambiente y Desarrollo Territo-

rial (SEMADET) and Coordinación de Innovación Guber-

namental (CGIG). The overall accuracy of the map labels is

89.48 ± 0.2%. In addition, we used the USGS Landsat 8

Surface Reflectance Tier 1 collection from January to Dec

2016, to generate a cloud-free median composite image, in

addition, we compute the normalized Difference Vegetation

Index (NDVI) [18] and Normalized Difference Water In-

dex (NDWI) [14]. Moreover, a digital elevation model was

included based on the Shuttle Radar Topography Mission

(USGS) [4] using the GRASS software [6]. Finally, Land-

sat 8, relief and LULC map 2016 (Labels) data were stacked

into a single dataset with 13 channels: Lansat8 (Band 2

(BLUE), Band 3 (GREEN), Band 4 (RED), Band 5 (NIR

near infrared), Band 6 (SWIR Shortwave infrared), (SWIR

2), NDVI = (Band 5 – Band 4) / (Band 5 + Band 4), NDWI

= (Band 6 – Band 5) / (Band 6 + Band 5), Digital elevation

model, Relief Slope, Relief Aspect, Relief Tangencial Cur-

vature, and Relief Profile Curvature. The name of each 17

LULC map 2016 classes is presented in Table 1. We gener-

ate 21,046 patches with (3× 3× 13), divided into 70% for

training, 15% for validation and 15% for test.

4. LUCC Lightweight ConvNet

The proposed ConvNet architectures is defined

as: (input shape of 3 × 3 × 13), (2DConv,128,1,

ReLU), (2DBatch-normalization) (2DConv,64,1, ReLU),

(2DBatch-normalization), (Flatten), (Fc,128,ReLU),

(Fc,32,ReLU), (Fc,16,ReLu), (Fc,N,sofmax). We designed

this model taking into account, the following: i) Classify

the land cover using MMU ( input size 3× 3). ii) The pos-

sibility to handle 2D signal with 13 channels (1 × 1 kernel

2D convolution). iii) Low number of weights to reduce the

inference and training time. To solve these requirements we

combine our experience with expert-knowledge, tests and

image analysis to select the most appropriate architecture.

The 1 × 1 convolution is used as channel-wise pooling to

promote learning across channels such as [7, 12, 20]. The

Batch-normalization layer was added [10] to reduce the

internal covariate shift problem, in fact, we expect to have

this problem due to the study area having small unevenly

distributed examples across the territory. We decide to

add three dense (fully connected = Fc) layers [128,32,16]

with ReLU, each one having a Gaussian dropout (30%) to

reduce overfitting [11].

5. Experimental setup

We conducted three trainings with the proposed archi-

tecture: i) a base-line training using a dataset with 17

balanced-classes, presented at Table 1 (Column Class), ii)

coarse-grain training, due to embedded analysis, showed

that eighth classes could be grouped into four, resulting in

13 classes iii) fine-grain training for binary classification in

each group (with similar classes). The hyperparameters val-

ues in all the training are: learning rate= 0.0001, epochs=

150 and batch size= 32. In addition, we used 0-90o random

rotations, horizontal and vertical flips as data augmentation.

The embedded analysis is based on a embedded layer re-

placing the last two layers in our CNN architecture for a

embedded layer consisting of an output dimension of 17 and

an L2 normalization. Once the model is trained, we apply a

t-distributed stochastic neighbor embedding (t-SNE) [9].

6. Results and analysis

The base-line test-loss and test-accuracy (using 17

classes) are 0.81 and 0.73 respectively. The details of the

base-line classification performance per class are presented

in Table 1. We observe that class-ID 32 (water) has the best

classification performance with and F1-score of 0.96. In

contrast, the classes with IDs 2,3,12,15,28,29,34 and 35 has

the worst classification results with f1-score ranging from

0.35 to 0.75. The embedding analysis is presented at Fig-

ure 2. In this 2D representation, we can observe the pres-

ence of clusters formed by the classes [(index = 1: class ID 2

Coniferus forest),(index 3 : class ID 3 Oak forest)], [(index

8 : class ID 34 cultivated grassland), (index 10 : class ID 12

Tropical dry forest)] , [(index 13: class ID 29 rain feed agri-

culture),(index 14 : class ID 35 cropland irrigated)], [(index

6, class ID 15 crassicaule scrub) (index 9: class ID 28 nat-

ural grassland)]. In consequence, we decided to create four

new groups: g1=(ID 2, ID 3), g2=(ID 34, ID12), g3=( ID

29, ID 35), and g4=(ID 15, ID 28).

The results of the coarse-grain classification with 13

classes (using the same ConvNet) shows lower test-loss

value, 0.53, and higher test-accuracy, 0.83 in comparison to

the base-line classification with the 17 classes. The coarse-

grain classification details are presented at Table 2. Note

that the four groups increase their performance substan-

tially. The fine-grain classification details over the four

https://datos.jalisco.gob.mx/dataset/mapa-coberturas-del-suelo-estado-de-jalisco-al-2016
https://lpdaac.usgs.gov/products/srtmgl1v003/


P R F1 S ID Class

0.98 0.93 0.96 207 32 Water

0.60 0.46 0.52 185 2 Coniferous forest

0.89 0.95 0.92 210 1 Upland coniferous forest

0.42 0.30 0.35 180 3 Oak forest and riparian forest

0.69 0.81 0.75 196 7 Cloud forest and low evergreen forest

0.93 0.99 0.96 169 9 Mangrove and peten

0.60 0.85 0.71 183 15 Crassicaule schrub

0.89 0.76 0.82 192 5 Mezquital and submontane shrub

0.45 0.48 0.46 168 34 Cultivated and induced grasslands

0.43 0.36 0.39 185 28 Natural grasslands

0.59 0.58 0.58 183 12 Tropical dry forest

0.74 0.94 0.83 206 13 Tropical semideciduous forest

0.74 0.69 0.72 183 31 Bare land

0.60 0.47 0.52 191 29 Rain fed agriculture

0.76 0.74 0.75 170 35 Cropland irrigated

0.79 0.84 0.81 177 30 Urban areas

0.80 0.88 0.84 172 26 Hydrophilic halophilic vegetation

Table 1. Base-line classification report over the 17 classes. Where

P = precision, R = recall , F1 = F1 score S = support.

Figure 2. Embedding representation . The closer groups are

g1=[(index = 1: class ID =2 Coniferus forest)(index 3 : ID 3 Oak

forest)], g2 = [(index 8 : ID 34 cultivated grassland) (index 10 :

ID 12 Tropical dry forest)] , g3=[(index 13: ID 29 rain feed agri-

culture)(index 14 : ID 35 cropland irrigated)], g4=[(index 6, ID 15

crassicaule scrub) (index 9: ID 28 natural grassland)].

groups are presented in Table 3. We observe from this ta-

ble that the g1 group (2: Coniferous forest, 3:Oak forest)

has the lowest classification performance. Figure 3 presents

the ground truth map and the prediction in the Guadalajara

urban. It is possible to note that the urban area (pink) is rel-

atively well classified. It is possible to see some salt and

paper artefacts in the natural areas, this artefacts are mainly

related with the mask size.

7. Conclusions and Future work

In this paper we have presented a novel lightweight

ConVnet to classify the annual LULC images combining

real-world open data sources: Lansat8 (multi-seasonal and

medium spatial resolution) cloud-free, realief, and 2016

Jalisco’s LULC map. In contrast, to most common trans-

P R F1 S ID Class

0.97 0.97 0.97 152 32 Water

0.83 0.98 0.90 199 1 Upland coniferous forest

0.85 0.81 0.83 192 7 Cloud forest and low evergreen forest

0.74 0.70 0.72 184 g1 Coniferus forest and Oak forest

0.64 0.52 0.57 170 g2 Cult. grassland and Trop. dry forest

0.83 0.62 0.71 186 g3 Rain agriculture and Crop. irrigated

0.70 0.86 0.77 184 g4 Crassicaule scrub and Nat. grassland

0.97 1.00 0.98 190 9 Mangrove and peten

0.87 0.87 0.87 193 5 Mezquital and submontane shrub

0.83 0.95 0.88 202 13 Tropical semideciduous forest

0.82 0.73 0.77 173 31 Bare land

0.83 0.87 0.85 190 30 Urban areas

0.89 0.88 0.88 200 26 Hydrophilic halophilic vegetation

Table 2. Classification report with grouped classes. Where P =

precision, R = recall , F1 = F1 score and S = support.

P R F1 S ID Class

0.72 0.64 0.68 184 2 Coniferous forest

0.68 0.76 0.72 188 3 Oak forest

0.83 0.87 0.85 190 34 Cultivated grassland

0.86 0.82 0.84 182 12 Tropical dry forest

0.88 0.82 0.85 182 29 Rain feed agriculture

0.84 0.89 0.86 190 35 Cropland irrigated

0.84 0.75 0.79 194 15 Crassicaule scrub

0.76 0.84 0.80 178 28 Natural grassland

Table 3. Fine-grain classification report per group. Where P =

precision, R = recall , F1 = F1 score S = support.

Figure 3. Left: Ground truth map of the urban area of Guadalajara

(pink). Right: prediction over the same area.

fer learning works, the proposed ConvNet can handle 13

channels, and due to 1× 1 kernel-size convolution it is pos-

sible to take into account the relation over the channels. In

addition, this network is designed to work with tiny input

size 3 × 3 conrresponding to the minimum mapeable unit.

After an embedded analysis, we grouped the similar classes

and increase the test-accuracy from 73% to 83%. The open

challenges are the salt and paper noise in the prediction

and the lower classification performance with the groped

classes. Our research would supports the decision-makers

providing evidence, for example, of deforestation or forest

degradation.
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gel Castillo-Santiago, and Gerardo Bocco. Comment on

gebhardt et al. mad-mex: automatic wall-to-wall land cover

monitoring for the mexican redd-mrv program using all land-

sat data. remote sens. 2014, 6, 3923–3943. Remote Sensing,

8(7):533, 2016. 1

[14] Stuart K McFeeters. The use of the normalized difference

water index (ndwi) in the delineation of open water features.

International journal of remote sensing, 17(7):1425–1432,

1996. 2

[15] Pontus Olofsson, Giles M Foody, Martin Herold, Stephen V

Stehman, Curtis E Woodcock, and Michael A Wulder. Good

practices for estimating area and assessing accuracy of land

change. Remote Sensing of Environment, 148:42–57, 2014.

1

[16] Darius Phiri and Justin Morgenroth. Developments in landsat

land cover classification methods: A review. Remote Sens-

ing, 9(9):967, 2017. 1

[17] Jorge Enrique Ramı́rez Albores, Ernesto Ivan Badano,
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