
On the generalization capabilities of FSL methods through domain adaptation:
a case study in endoscopic kidney stone image classification

Mauricio Mendez-Ruiz
Tecnológico de Monterrey

School of Engineering and Sciences, Mexico
mau.mruiz@gmail.com

Francisco Lopez-Tiro
Tecnológico de Monterrey

School of Engineering and Sciences, Mexico
A01799045@tec.mx

Daniel Flores-Araiza
Tecnológico de Monterrey

School of Engineering and Sciences, Mexico
A01098051@tec.mx

Jonathan El-Beze
CHU Nancy, Service d’urologie de Brabois

F-54511 Nancy, France
j.elbeze@chru-nancy.fr

Jacques Hubert
CHU Nancy, Service d’urologie de Brabois

F-54511 Nancy, France
j.hubert@chru-nancy.fr

Andres Mendez-Vazquez
Centro de Investigación y de Estudios Avanzados
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Abstract

Deep learning has shown great promise in diverse ar-
eas of computer vision, such as image classification, ob-
ject detection and semantic segmentation, among many oth-
ers. However, as it has been repeatedly demonstrated,
deep learning methods trained on a dataset do not gener-
alize well to datasets from other domains or even to similar
datasets, due to data distribution shifts. In this work, we
propose the use of a meta-learning based few-shot learning
approach to alleviate these problems. In order to demon-
strate its efficacy, we use two datasets of kidney stones sam-
ples acquired with different endoscopes and different ac-
quisition conditions. The results show how such methods
are indeed capable of handling domain-shifts by attaining
an accuracy of 74.38% and 88.52% in the 5-way 5-shot
and 5-way 20-shot settings respectively. Instead, in the
same dataset, traditional Deep Learning (DL) methods at-
tain only an accuracy of 45%.

1. Introduction
Progresses made in Artificial Intelligence (AI) in recent

years show great results that compare or surpass human
capabilities in a set of problems such as natural language
processing [47], smart agriculture [2], object recognition
[27], healthcare and medical applications [20], among oth-
ers. Such AI-based models have been possible due to the
existence of large scale labelled datasets enabling to ex-
tract profound knowledge about the data. However, it has
been demonstrated that if the same models are deployed in
slightly different operating conditions (i.e., medical imag-
ing applications) such AI methods are in fact are very frag-
ile [34], as they exhibit very poor generalization properties
[50]. Such variations can stem from changes in acquisi-
tion devices and/or the operating conditions in clinical set-
tings, which can hamper the adoption of AI-based CAD
tools in many applications [42]. To make matters worse,
most DL methods in the state of the art still require humon-
gous amounts of data to be trained, which is not realistic in
most of the medical application domains. Therefore, in re-
cent years, the meta-learning and Few-Shot Learning (FSL)
paradigms have emerged as a means to cope with the train-
ing data scarcity problem and furthermore, to make models
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more capable of generalization with less computing effort
and incremental learning capabilities [28].

In this work, we propose a novel meta learning-based
few shot learning approach for image classification to as-
sess the generalization of a trained model in two different
kidney stones datasets. Our method is based on the fol-
lowing two core ideas: i) The use of a pre-trained model
that learns representations through self-supervised learning
(instead of a supervised one) can enhance the features gen-
eralization and ii) a meta-learning stage can be used to fur-
ther fine-tune the model for specific domains in order to im-
prove its performance. The advantage of our method is that,
compared to other DL approaches to classify kidney stones,
it can better generalize to other data distributions and ob-
tain good results without the need of manual data augmen-
tation. In order to validate our proposal, we make use of
two datasets of kidney stones acquired using endoscopes
of two different vendors and of different technical charac-
teristics and under different acquisition conditions (in-vivo,
ex-vivo). As illustrated in Figure 1 our method is divided
in three stages. First, in the pre-training phase, we use a
self-supervised model for the embedding network. Then,
we proceed to a meta-learning stage, where we fine-tune
our model. Lastly, we evaluate the model with the two kid-
ney stones datasets and obtain the corresponding metrics
and features visualization, which are of great help to better
assess the generalization capabilities of the model.

The rest of the paper is organized as follows. In section 2
we present the medical motivation for this work, while sec-
tion 3 discusses the state of the art of FSL. In section 4 we
introduce the proposed method and in Section 5 we provide
details about the implementation and experiments made in
order to obtain the best model, as well as the comparison
with previous models. Finally, in section 6 we summarize
our work and discuss some perspectives for future work.

2. Medical Context and Motivation
In recent years, there has been an increased interest in the

recognition of kidney stones morphologies (i.e. crystalline
type) for speeding the diagnosis and treatment processes
[25, 21]. The traditional (en-vivo) approach, known in
the medical field as morpho-constitutional analysis (MCA
[11, 9]) , relies on an inspection of the surface and section of
the images under the microscope, followed by a SPIR anal-
ysis to determine their biochemical composition (i.e. stone
type). This analysis is essential as it provides very important
information about the lithogenesis (i.e. cause of formation)
of the stone, but modern extraction techniques increasingly
rely on a technique for pulverizing the stone. Such tech-
nique, known as dusting, leads to a destruction of the mor-
phological information of the sample or even an alteration
of its biochemical composition [24], making it impossible
to prescribe an appropriate and timely treatment.

Therefore, specialists have sought solutions in the form
image classification methods for categorizing kidney stone
samples, first using ex-vivo images corpuses [39, 3] and
later tackling the problem of endoscopy stone recognition
(ESR) [31, 30, 12]. Although the results have been encour-
aging (up to 98% average precision for pure stones), some
of the methodological choices make the results far from
conclusive as more complete studies are needed [45].

First, the majority of ML-based ESR methods make use
of very small datasets and rely heavily on patch sampling
[30, 3], which might introduce bias towards certain classes
(i.e. data leakage). Furthermore, most datasets reported in
the literature contain only a small fraction of the 21 identi-
fied classes of kidney stones (up to 6 classses) which might
yield overly optimistic results [1]. Another aspect is that
most of the existing methods have been tested on images ac-
quired using one or at most two endoscopes types from the
same hospital, which can lead to problems such as shortcut
learning, or simply the samples might not be representative
enough of the underlying distribution. This leads to a prob-
lem increasingly reported in the literature: models trained
with data from certain acquisition devices or under certain
imaging circumstances do not generalize well to data from
a different distribution [49]. In fact, we show later in the ar-
ticle that models trained on one dataset present a significant
drop in performance when tested with unseen data (i.e. the
same classes acquired with a different ureterescope).

In order to address some of the issues mentioned above,
in this work we explore recent developments in the DL field,
namely few shot learning and meta-learning strategies that
are promising areas of research for training models with
few samples and capable of better generalization capabil-
ities. For validating our approach we make use of two very
distinct kidney stones datasets, containing data from the
same classes, but different distributions (i.e., the data was
acquired with different endoscopes and under different ac-
quisition conditions). To the best of our knowledge, our
work is of the firsts to assess the generalization capabilities
of ML models applied on endoscopic images.

3. Related Work

3.1. Few-shot learning

Research on FSL has received an increased attention on
recent years, as it has continuously demonstrated good re-
sults on problems with low availability of data [40, 46].
Recent models for FSL adopt a meta-learning strategy, an
approach thats seeks to learn discriminant features across
tasks, later adapting the model to new tasks.

We can categorize FSL approaches into two main
branches: 1) metric-learning based, and 2) optimization
based. The goal of metric-learning approaches is to learn
a similarity metric expected to generalize across different



Figure 1: The proposed model is divided into three stages: pre-training, meta-learning and evaluation.

tasks. There are baseline methods which have achieved im-
portant milestones for FSL, such as Prototypical Networks
([40]), Matching Networks ([46]) and Relation Networks
([41]). Optimization based approaches make use of a base-
learner and a meta-learner, where the meta-learner’s pa-
rameters are optimized by gradual learning across tasks to
promote a faster learning of the base-learner for each spe-
cific task. The Model-Agnostic Meta-Learning (MAML)
approach [13] was the first one to use this strategy to pa-
rameter initialization, such that the base learner can rapidly
generalize from an initial guess of parameters. Thus, exten-
sions to MAML have been proposed [35, 37] to improve the
optimization of the meta-learner.

3.2. Cross-domain FSL

Domain adaptation refers to the transfer of knowledge
from one or multiple source domains to a target domain
with a different data distribution. Several approaches have
been proposed to address this issue: discrepancy-based
models [29, 23], adversarial-based methods [44, 14] and
reconstruction-based approaches [4, 19]. Nevertheless,
even when the data distributions are different, these meth-
ods operate in situations where the training and test sets
contain the same classes.

For cross-domain FSL, where base and novel classes
come from different domains, this can introduce non-
desirable variations in the performance of the models.
In [6], the authors made an analysis of different meta-

learning methods in the cross-domain setting. They pro-
posed a cross-domain scenario which trains on miniIma-
genet dataset and test with CUB dataset images. Further
on, in [15], the authors established a challenging bench-
mark consisting of images of diverse types with an increas-
ing dissimilarity degree to natural images and with various
levels of perspective distortion, semantic content and color
depth. They also evaluated the performance of existing
meta-learning methods on this benchmark. All these works
show how cross-domain paradigm is able to enhance the re-
sults the base models, making cross-domain approaches one
of the corner stones of FSL

3.3. Kidney Stones Classification

Different approaches have been proposed to deal with
the classification of kidney stones from still images, ac-
quired through different means. For instance, authors in
[39] made use of ex-vivo images to train a Random Forest
classifier, which exploits histograms of RGB colours and
local binary patterns. As a continuation of this work, they
trained a DL methods base on a Siamese CNN [43] using
the same dataset. Although such methods showed the po-
tential of image-based recognition of kidney stones, the pro-
posed models obtained a moderate performance of 71% and
74% on mean accuracy, respectively. The authors in [3] im-
proved these results by using a ResNet-101 and employing
a data augmentation technique to leverage the small dataset.
These previous methods have the limitation of being tested



on ex-vivo images obtained in highly controlled acquisition
conditions, while in-vivo images are more difficult to uti-
lize due to the complex acquisition conditions present in
endoscopic procedures [51] . For in-vivo images, authors
in [31] used classical classifiers such as Random Forest and
kNN ensemble models obtaining an improved accuracy of
85% over 3 kidney stone classes. Later on, [30] used CNN-
based models to further improve their results, obtaining an
accuracy of over 90% on precision and recall over 4 classes.

Although these kidney stone classification methods have
yielded increasingly good performances, they pose certain
problems. First, they all require a great deal of manual data
augmentation work to create several patches from the im-
ages. Second, the training and evaluation has been made
over those patches instead of the full images, which is not
realistic. Third, all these previous methods have shown poor
generalization capabilities, as they are trained with images
from specific data acquisition conditions and fail to classify
when using a different acquisition method, as we will dis-
cuss in more detail in a subsequent section.

4. Proposed Approach
FSL is a growing research field with the challenging

problem of learning from limited data, while verifying the
performance of the models on previously unseen classes.
Additional to this, FSL methods are expected to generalize
well to other data distributions. In this work, as shown in
Figure 1, we follow a two stages paradigm (pre-training and
meta-learning) to train models capable of generalizing to a
different data distribution to classify unseen kidney stones
classes. In this approach, the model is first pre-trained on
a large datasets of natural images (i.e., ImageNet) to obtain
a good initial estimate of the model parameters. Then the
model is fine-tuned using a meta-learning approach with in-
creasingly similar datasets to the target domain. Finally, the
model is tested with data coming from a completely new
distribution to assess it genelization capabilities.

4.1. Datasets

4.1.1 Base Datasets

The MiniImagenet dataset [46] is a subset of the ImageNet
dataset [38]. It is comprised of 100 classes with 600 images
per class, making up a total of 60,000 images.

This dataset is widely used in the FSL literature for im-
age classification [13, 40], following the same split pro-
posed in [46] by sampling images of 64 classes for training,
16 classes for validation and 20 classes for testing.

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [48] is
an image dataset with more specialization in the categories,
containing photos of 200 bird species.This dataset was cre-
ated for the study of subordinate categorization, which is
not possible with other datasets like ImageNet. Most few-

shot learning approaches in the literature make use of CUB-
200 for measuring its performance, following the protocol
proposed by [18].

4.1.2 Cross-Domain datasets

For the cross-domain adaptation in FSL, we used the
datasets suggested by [16], comprised of images from mul-
tiple domains (i.e., image modalities and acquisition condi-
tions). The first dataset is CropDiseases [33], which con-
tains 38 classes with images of plant leaves. We split the
dataset into 30 classes for training and 8 for validation. The
second dataset is EuroSAT [17], which contains satellite im-
ages for land use and land cover classification. It is com-
prised of 10 classes that we split into 5 classes for training
and 5 for validation. The third dataset is ISIC [8], contain-
ing skin diseases images for skin image analysis. It contains
7 categories, which we split by using 5 for training and 2
for testing. The fourth dataset is Chest-X, containing X-ray
chest images for the diagnosis of many lung diseases.

4.1.3 Kidney Stones datasets

We make use of two different kidney stones datasets, ob-
tained using two different acquisition devices (i.e., en-
doscopes) and under divergent acquisition conditions and
lighting environments: the first is comprised by in-vivo im-
ages, whilst the second was created by capturing images
with an endoscope in ex-vivo conditions, see Fig. 2.

The in-vivo dataset includes 156 kidney stone images
acquired in-vivo (i.e. during actual ureteroscopic inter-
ventions) and which were annotated by expert Dr. Vin-
cent Estrade (an urologist involved in MCA). The dataset
consists of 65 cross-section images and 91 surface images
from the 4 classes of kidney stones with the highest inci-
dence: uric acid (AU), brushite (BR), weddelite (WD) and
whewellite (WW). Table 1 details the amount of images
from each kidney stone category. The images from this
dataset were captured using different ureteroscopes from
Olympus and the Richard Wolf company. Some images
from this dataset are shown on Fig. 2a. It must be noted
that such images are more challenging that those present in
other datasets, which make use of high resolution images
acquired ex-vivo using either professional cameras or digi-
tal microscopes. More details can be found in [11].

The ex-vivo dataset consists of 765 kidney stones im-
ages, with 318 corresponding to cross-section and 447 cor-
responding to surface images, from 6 of the kidney stones
categories with higher incidence: uric acid (AU), brushite
(BR), cystine (CYS), struvite (STR), weddelite (WD) and
whewellite (WW). The ex-vivo columns in Table 1 detail
the amount of images and their type in this dataset. Figure
2b show examples of images from this dataset. The images
were acquired with an actual endoscope from Karl Storz,



In-vivo Ex-vivo

Class/View Section Surface Total Section Surface Total

Acid Uric 17 17 34 62 70 132
Brushite 12 12 24 95 109 204
Cystine - - - 53 52 105
Struvite - - - 28 52 80

Weddelite 9 32 41 48 85 133
Whewellite 27 30 57 32 79 111

Total 65 91 156 318 447 765

Table 1: Number of acquired images from the in-vivo and
ex-vivo kidney stones dataset.

and great care has been taken to reproduce the conditions
of the ureteroscopic interventions in terms of the tissue sor-
rounding the stones and the field of view, as well as possible
photometric artifacts that can affect the image quality. More
detials about the acsquision process and characteristics of
this dataset can be found in [10]

4.2. Model training and design choices

4.2.1 Pre-training stage

The first approaches for FSL used a simple ConvNet back-
bone, made up of 4 convolutional blocks, as the feature
extractor [40], leading to good results that supported the
promising research of these methods. Current state-of-the-
art models with high performance make use of a ResNet-
12 [26] or a wide ResNet [36], outperforming other mod-
els which make use of deeper embedding networks. This
could be because, since we access to a very small amount
of samples, deeper networks are more prone to overfitting
in the supervised training. Therefore, an essential element
for the meta-learning process is the initial embedding net-
work. Several state-of-the-art methods [5, 7] demonstrate
that having a pre-trained network allows us to use a deeper
backbone, thus greatly improving the performance of few-
shot learning models.

Among the pre-training strategies for FSL available in
the literature, a self-supervised learning (SSL) method [5]
stands out, as it has demonstrated a good results in this taks,
outperforming other state-of-the-art models. We adopt this
pre-training strategy, which allows us to use a large em-
bedding network. The SSL stage works as follows: us-
ing the Augmented Multiscale Deep InfoMax (AMDIM)
model, it optimizes the network by looking for mutual local
and global features from different views of an instance, thus
enhancing the feature’s generalization for new tasks. This
makes the trained network more transferable to different do-
mains and data distributions.

4.2.2 Meta-learning stage

After finding an appropriate initialisation via SSL, we pro-
ceed with the meta-learning stage to learn to generalize
across tasks. This stage is divided into two phases: Meta-
training and meta-testing. A few-shot K-way C-shot im-
age classification task is given K classes and C images
per class. The task-specific dataset can be formulated as
D = {Dtrain, Dtest}, where Dtrain = {(Xi, yi)}Ntrain

i=1

denotes the classes reserved for the training phase and
Dtest = {(Xi, yi)}Ntest

i=1 denotes the classes reserved for
the testing phase. For each meta-train task T , K class labels
are randomly chosen from Dtrain to form a support set and
a query set. The support set, denoted by S, contains K ×C
samples (K-way C-shot) and the query set, denoted by Q,
contains n number of randomly chosen samples from the
K classes. The training phase uses an episodic mechanism,
where each episode E is loaded with a new random task
taken from the training data. For the meta-test, the model
is tested with a new task T constructed with classes that
weren’t seen during the meta-train phase.

We follow a metric learning approach for the image clas-
sification component of our approach. Specifically, we im-
plemented a prototypical networks [40] model by comput-
ing the prototypes ck as the mean of embedded support sam-
ples for each class. For a class k, the prototype is repre-
sented by the centroid of the support embedding features,
obtained as:

ck =
1

|Sk|
∑

(xi,yi)∈S

f(xi), (1)

The classification is performed by finding the nearest
prototype for a given embedded query point. The Euclidean
distance is chosen as the distance function to find the near-
est class prototype.In the proposed method, we first apply
SSL to pre-train the large embedding network, followed by
a number of meta-learning iterations to fine-tune the model.
The iterations are made by training and validating the model
with different datasets, as a way to alleviate the domain shift
preventing a successful classification of kidney stones.

The datasets used for meta-training were selected be-
cause they meet the requirement of decreasing its similarity
with ImageNet based on three orthogonal criteria: i) Exis-
tence of perspective distortion, ii) the semantic content and
iii) the color depth. The ImageNet dataset contains natu-
ral and colored images with perspective. The CropDisease
dataset contains natural and colored images with perspec-
tive. Meanwhile, the EuroSAT dataset contains natural and
colored images but without perspective. In contrast, the
ISIC and ChestX dataset contain medical and images with
no perspective (in color and in B/W, respectively). We can
place the kidney stones datasets used for this study within
the spectrum of dissimilarity as ISIC, as they contain both



(a) In-vivo images (b) Ex-vivo images

Figure 2: Examples of kidney stone images from the (a) in-vivo and (b) ex-vivo dataset. The categories shown are, from
left to right, uric acid (AU), brushite (BR), cystine (CYS), struvite (STR), weddelite (WD) and whewellite (WW). Surface
images are on the top row and section images are on the bottom row.

medical and colored images with no perspective.
Therefore, the model gradually converges to a to a point

in which more discriminating features are learned from the
fine-tuning process. This domain-specific fine-tuning done
as follows: First, we meta-train the model with the base
datasets (MiniImageNet and CUB-200); then we special-
ize the model domain by meta-training with the CropDis-
ease, EuroSAT and ISIC datasets sequentially. The Chest-X
dataset is not considered for the sequential meta-train due
to its dissimilarity with the kidney stones datasets, which
would only decrease the performance obtained.

After training and validating the model, we perform the
meta-testing with the two kidney stones separately. These
datasets are not used in the meta-training phase, so we
can evaluate the generalization capabilities of the proposed
method.

5. Experimental Results
5.1. Implementation details

For the training phase of our FSL model, we follow
the same setting as other few-shot learning models [40] by
learning across the 5-way 1-shot and 5-way 5-shot task set-
tings and using 15 query samples for each class in the task.
For the meta-training phase, we randomly sample 100 tasks
over 200 epochs. We validate each epoch with 500 ran-
domly constructed tasks using the classes reserved for val-
idation. For the testing phase, we randomly construct 200
tasks which is enough for the little amount of data from the
kidney stones datasets.

For the feature extraction backbone, we tested two dif-
ferent embedding networks, a ConvNet and an AmdimNet.
Following the same approach as [40, 46], the ConvNet is
built using four layers of convolutional blocks. Each block
is made up of a 3x3 convolution with 64 filters, followed by
a batch normalization and a ReLU layer. The input images
are resized to 84×84 and normalized. For this network, we
do not apply a pre-training process due to the small scale
of the model. In the meta-learning phase, we use the Adam

Optimizer with an initial learning rate of 1 × 10−3 and a
step size of 20. For the AmdimNet, we follow the same
setup provided by [5] consisting of the pre-training stage
and meta-learning stage. In the pre-train stage we use the
Adam Optimizer with a learning rate of 0.0002 and an em-
bedding dimension of 1536. We resize the unlabelled input
images to a size of 128 × 128 pixels. In the meta-learning
stage, the input images are resized to 84× 84 pixels and we
used the SGD as optimizer with an initial learning rate of
2× 10−4, a step size of 20 and weight decay of 0.0005.

5.2. Training details

Our experiments were carried out in three main steps.
In the first we carried out quick tests to determine if the
kidney stones classification was indeed a problem that few-
shot learning could solve. We trained the base prototypi-
cal networks [40] on the 5-way 5-shot and 20-way 5-shot
settings, and tested the models generalization on both kid-
ney stones datasets. The results obtained in this step were
promising, with models that generalized much better than
previous deep learning methods. The second step was a
round of experiments to find the best hyper-parameters for
the main model (AmdimNet). We tested a set of combina-
tions for the optimizer, learning rate and step size, finding
that the best combination was SGD optimizer with a learn-
ing rate of 0.0002 and step size of 20. Lastly, the third step
was to carry out experiments to find the best performing
model for the kidney stones classification. We explain the
details below.

For the pre-training stage we trained two different em-
bedding models: i) ImageNet900 (Img900) was trained us-
ing the SSL strategy from 900 classes of the ImageNet
dataset (removing from ImageNet the 100 classes used in
MiniImageNet) and ii) ImageNet1k (Img1k) is trained us-
ing self-supervised learning from the whole 1,000 classes
of the ImageNet dataset without any label.

For the meta-training stage we adopted a domain-
specific fine tuning to reduce the domain shifts between
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Pretrain Meta-training Details

1 ImageNet 900 ✓ ✓ ✓ ✓ All datasets (except CUB) sequentially meta-trained
2 ImageNet 900 ✓ ✓ ✓ ✓ ✓ All datasets sequentially meta-trained
3 ImageNet 900 ✓ ✓ ✓ ✓ ✓ All datasets meta-trained at once
4 ImageNet 1k ✓ ✓ ✓ ✓ All datasets (except CUB) sequentially meta-trained
5 ImageNet 1k ✓ ✓ ✓ All datasets sequentially meta-trained
6 ImageNet 1k ✓ ✓ ✓ ✓ ✓ All datasets meta-trained at once

Table 2: Experimental setup with incrementally more similar datasets to the target domain.

the source datasets and the target of kidney stones images.
Since our testing phase is carried out with the kidney stones
datasets, the base datasets were modified to only have train-
ing and validation classes in the following way. In MiniIma-
geNet, we assign for training the classes previously used for
training and validation, and for validation we use the classes
previously used for testing, leading to a total of 80 classes
for training and 20 for validation (Mini80). The same split
is applied to the CUB dataset, in which we use 150 classes
for training and 50 classes for validation (CUB150). We
trained over 20 different models, splitting the experiments
into 6 data configurations based on how the model would be
trained. The meta-learning setting was either by incremen-
tal learning through different datasets or by meta-learning
among all datasets at once.

Table 2 summarizes the experimental setup, comprised
by the configurations just described above. The first three
rows are models pre-trained with ImageNet900 and the
last three configurations are models pre-trained with Im-
ageNet 1k. For model 1, we sequentially meta-trained
across Mini80, followed by CropDiseases, then EuroSAT
and lastly ISIC. The same applies for model 2, but adding
CUB150 after meta-training with Mini80. For model 3, we
tested the following 4 settings with the idea of learning from
different datasets at once: i) Training the model first with
Mini80, followed by a training with the rest of datasets,
ii) training first with Mini80, followed by CUB150, and
then the rest of datasets, iii) train with all datasets, except
CUB150, at once, and iv) training with all the datasets at
once. For the last 3 models in the table, we repeated the
same experiments but with the model pre-trained on Ima-
geNet 1k and removing Mini80 from the datasets used in
meta-training, since those would represent classes already
seen in the pre-training stage.

5.3. Evaluation results

In order to evaluate the generalization capabilities of the
models trained using the various configurations in Table
2, the architectures were tested on the two kidney stones
datasets described in Section 4.1.3.

Following the cross-domain setup described in [16],
we conducted experiments by testing the proposed model
across three main few-shot tasks (i.e., 5-way 5-shot, 5-way
20-shot and 5-way 50-shot). For the in-vivo dataset, we do
not have enough images per class to test the 5-way 50-shot
setting. Thus, the experiments with this setting are excluded
for the in-vivo classification experiments.

5.3.1 Ablation Study Results

In order to assess how the various components of our pro-
posed approach affect the generalization results of the gen-
erated model, we carried our several ablation studies, shown
in Table 3. First, we validate the effectiveness of a tradi-
tional FSL approach to classify out of distribution datasets.
Specifically, we trained the baseline prototypical networks
[40] on the 5-way 5-shot and 20-way 5-shot settings. After
testing both models, we obtained an accuracy performance
of over 70% in ex-vivo and in-vivo images, and the models
demonstrated an acceptable generalization as they do not
exhibit an important loss of performance (around 2% - 3%)
when compared on the two kidney stones datasets.

Afterwards, we tested the performance yield by the mod-
els when only pre-training the models, to assess whether
or not there is a gain in performance when applying the
proposed meta-training strategy. After evaluating the ef-
fectiveness of two models (Img900 and Img1k), we found
that the accuracy performance greatly increased (around
12% for the in-vivo dataset and around 7% for the ex-vivo
dataset, using the Img900 and Img1k models, respectively).
Nonetheless, a decrease in the generalization capabilities



In-vivo Ex-vivo
Model 5-shot 20-shot 5-shot 20-shot 50-shot

ProtoNet 5w5s 63.31 71.88 58.75 65.36 67.85
ProtoNet 20w5s 63.28 72.72 60.47 67.85 70.27

Img900 69.68 84.49 67.05 74.18 76.46
Img1k 70.26 84.25 66.75 74.36 77.01

Img1k-CUB-All 68.38 85.03 68.46 77.65 80.09
Img900 +∗ 70.61 84.53 69.45 77.72 79.87

Img900 + ∗∗ 71.13 85.76 69.25 77.84 80.27
Img900 + ∗∗∗ 74.38 88.13 69.56 78.20 80.54

Table 3: Accuracy performance of the ablation studies on
our method. ∗= + Mini80 + Crop Diseases, ∗∗ = + Mini80
+ CUB + All, ∗∗∗ = + All (excluding CUB).

of the models can be observed, as there is a difference of
around 8% in the results for both datasets.

Finally, we tested the generalization performance after
implementing the meta-learning strategies described in Sec-
tion 4.2.2 . We found out that there is indeed an improve-
ment (an average of 4% for both datasets) over the model
that was only pre-trained. The improvement on accuracy is
not as large as for the ProtoNet and the pre-trained model.
The difference in accuracy between the in-vivo and ex-vivo
datasets is around 8%, which is the same difference using
only pre-trained models. This means that our meta-learning
approach was able to account for the domain-shift of the
model, while maintaining its generalization capabilities.

The best meta-learning-based models are shown in the
last row of Table 3. We can see that these models achieved
a great performance improvement over the basic FSL mod-
els (values of 88.13% in the in-vivo dataset and 80.54% in
the ex-vivo dataset). As we will see in the next subsection,
these results are comparable with some of the shallow mod-
els in the literature [31, 30] in terms of performance, and
still far below the results obtained by most deep learning
models. Nonetheless. the results in generalization are far
more superior. Also, while most models in the state of the
and have been trained with thousands of image patches, the
results discussed here make use of a few hundred images.

5.3.2 Comparison with previous works

To verify the effectiveness of our proposed method, we
compare it with previous works in endoscopic stone recog-
nition using the same datasets presented in Section 4.1.3.
In [30] several shallow ML methods and DL models were
used to classify the images of the in-vivo dataset. We imple-
mented some of these models and tested their generalization
capabilities by trying to classify the same 4 classes of the in-
vivo dataset but using the model trained on ex-vivo images.
Even though the classes are the same, we obtained very poor
results, showing that there is a large loss in performance (a
decay of around 40% in accuracy) when the images come

In-vivo Ex-vivo

Model P R F1 P R F1

R. Forest 0.91 0.91 0.91 0.32 0.26 0.26
XGboost 0.96 0.96 0.96 0.48 0.24 0.36
AlexNet 0.92 0.92 0.92 0.49 0.42 0.45
VGG-19 0.94 0.92 0.93 0.47 0.45 0.45
Inception 0.97 0.98 0.98 0.51 0.45 0.45

ProtoNet 0.71 0.72 0.72 0.70 0.70 0.70

Ours 0.88 0.88 0.88 0.82 0.81 0.81

Table 4: Results comparison with previous work. We show
the precision (P), recall (R) and F-score (F1) obtained on
the in-vivo and ex-vivo datasets.

from another data distribution. This issue plagues all the
methods equally, but it comes to show the fragility of the
existing traditional DL models.

Most of these problems can be partially fixed by using
metric learning apporaches. As it can be seen in Table 4,
even the basic ProtoNet model [40] is more apt at general-
izing with the same performance than the classical methods
mentioned before.

Our method obtained a high performance in three met-
rics: precision, recall and F1-score. Compared with some of
the classical machine learning methods (i.e., Random For-
est, XGBoost), we obtained competitive results for the in
and ex-vivo datasets. Moreover, we demonstrated that our
method has much better generalization capabilities as our
model exhbits a loss of 7% on accuracy, compared with the
loss of over 40% from previous works.

5.4. Discussion

To have a better understanding of how our model is be-
having, we visualize the features embeddings from the im-
age samples from both kidney stones datasets using UMAP
[32]. We can observe that in the feature space of the in-
vivo dataset (Figure 3a), the WD class overlaps with BR
and WW, something previously reported for traditional fea-
tures in [30]. In the reduced manifold of the ex-vivo dataset
(Figure 3b), we can see that even some of the classes form
distinct clusters, classes such as BR and STR tend to lie
very close to each other (a similar trend also occurs in clas-
sification made by humans) and that overall, the overlap of
the WW class is degrading the performance of the model
for ex-vivo images. It may be the case that some classes
follow a probability distribution, which would need other
metric learning method to be used during the model train-
ing to alleviate this problem.

It must be emphasized the urologists make use of both
surface and section images to perform the classification of a
given kidney stones, using Daudon’s morpho-constitutional
analysis ether under a microscope or with an endoscope [9].



(a) In-vivo dataset (b) Ex-vivo dataset

Figure 3: UMAP feature visualization of the (a) in-vivo dataset and (b) ex-vivo dataset. The visualizations can be used in
tandem with the morpho-constitutional analysis proposed by Daudon [9] to understand the errors done by the models

The results for the shallow and DL models in Table 4 are
for models trained in both types of images. Our results us-
ing meta-learning do not integrate this knowledge, and thus
exploring multi-view image fusion [22] represents an inter-
esting area of research to improve our results.

6. Conclusions
In this paper, we conducted a study on generalization ca-

pabilities of few-shot learning applied to two kidney stones
classification. We were interested in evaluating the gener-
alisation capabilities of meta learning-based FSL methods
in a scarce data regime (i.e. medical applications). For this
purpose, we made use of two datasets with overlapping the
same classes but different data distributions: different ac-
quisition conditions, (in-vivo and ex-vivo) and endoscopy
(type, brand, resolution). Where classical machine learning
and deep learning models failed to generalize when trained
on one dataset and tested on the other one, our few-shot
learning method was able to obtain a high performance over
of 80% in accuracy, recall and F1-score. The difference on
accuracy from the evaluation of both datasets is of around
8%, which is much lower compared with the loss on per-
formance from shallow machine and deep learning models.
Although we obtained a performance lower than the previ-
ous work on the in-vivo dataset, it is still competitive and
demonstrate much better generalization capabilities.
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Özsoy. Artificial intelligence: the future of urinary stone
management? Current Opinion in Urology, 30(2), 2020. 2

[22] Xiaodong Jia, Xiao-Yuan Jing, Xiaoke Zhu, Songcan
Chen, Bo Du, Ziyun Cai, Zhenyu He, and Dong Yue.
Semi-supervised multi-view deep discriminant representa-
tion learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(7):2496–2509, 2021. 9

[23] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G. Haupt-
mann. Contrastive adaptation network for unsupervised do-
main adaptation. CoRR, abs/1901.00976, 2019. 3

[24] Etienne X. Keller, Vincent de Coninck, Marie Audouin,
Steeve Doizi, Dominique Bazin, Michel Daudon, and Olivier
Traxer. Fragments and dust after holmium laser lithotripsy
with or without “moses technology”: How are they different?
Journal of Biophotonics, 12(4):e201800227, 2019. 2

[25] Norbert Laube, Florian Klein, and Christian Fisang. The sur-
geon’s role on chemical investigations of the composition of
urinary stones. Urolithiasis, 48(5):435–441, Oct 2020. 2

[26] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,
and Xiaogang Wang. Finding task-relevant features for few-
shot learning by category traversal. CoRR, abs/1905.11116,
2019. 5

[27] Tzuu-Hseng S. Li, Ping-Huan Kuo, Ting-Nan Tsai, and Po-
Chien Luan. Cnn and lstm based facial expression analysis
model for a humanoid robot. IEEE Access, 7:93998–94011,
2019. 1

[28] Hanwen Liang, Qiong Zhang, Peng Dai, and Juwei Lu.
Boosting the generalization capability in cross-domain few-
shot learning via noise-enhanced supervised autoencoder,
2021. 2

[29] Mingsheng Long, Jianmin Wang, and Michael I. Jor-
dan. Deep transfer learning with joint adaptation networks.
CoRR, abs/1605.06636, 2016. 3

[30] Francisco Lopez, Andres Varela, Oscar Hinojosa, Mauricio
Mendez, Dinh-Hoan Trinh, Jonathan ElBeze, Jacques Hu-
bert, Vincent Estrade, Miguel Gonzalez, Gilberto Ochoa, and
Christian Daul. Assessing deep learning methods for the
identification of kidney stones in endoscopic images. In 2021
43rd Annual International Conference of the IEEE Engineer-
ing in Medicine Biology Society (EMBC), pages 1936–1939,
2021. 2, 4, 8

[31] Adriana Martı́nez, Dinh-Hoan Trinh, Jonathan El Beze,
Jacques Hubert, Pascal Eschwege, Vincent Estrade, Lina
Aguilar, Christian Daul, and Gilberto Ochoa. Towards an au-
tomated classification method for ureteroscopic kidney stone
images using ensemble learning. In 2020 42nd Annual Inter-
national Conference of the IEEE Engineering in Medicine
Biology Society (EMBC), pages 1936–1939, 2020. 2, 4, 8

[32] Leland McInnes, John Healy, and James Melville. Umap:
Uniform manifold approximation and projection for dimen-
sion reduction. arXiv preprint arXiv:1802.03426, 2018. 8

[33] Sharada P. Mohanty, David P. Hughes, and Marcel Salathé.
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