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Abstract

Deep neural networks are vulnerable to small input per-
turbations known as adversarial attacks. Inspired by the
fact that these adversaries are constructed by iteratively
minimizing the confidence of a network for the true class
label, we propose the anti-adversary layer, aimed at coun-
tering this effect. In particular, our layer generates an in-
put perturbation in the opposite direction of the adversarial
one, and feeds the classifier a perturbed version of the input.
Our approach is training-free and theoretically supported.
We verify the effectiveness of our approach by combining
our layer with both nominally and robustly trained mod-
els, and conduct large scale experiments from black-box
to adaptive attacks on CIFAR10, CIFAR100 and ImageNet.
Our anti-adversary layer significantly enhances model ro-
bustness while coming at no cost on clean accuracy.
1. Introduction

Deep Neural Networks (DNNs) are vulnerable to small
input perturbations known as adversarial attacks [11, 23].
While there has been interest in training DNNs that are
robust to adversarial attacks, assessing a defense’s robust-
ness remains an elusive task. This difficulty is related to:
(i) Model robustness varies with the information the at-
tacker is assumed to know, e.g. training data, gradients,
logits, etc.— dichotomously categorizing adversaries as
black- or white-box. Consequently, this categorization im-
poses difficulties for comparing defenses tailored to specific
types of adversaries. For instance, some defenses crafted
for white-box attacks were later broken by black-box at-
tacks [4, 20]. (ii) In addition, empirically-evaluated robust-
ness can be overestimated if weaker efforts are invested in
adaptively constructing attacks [6, 24]. The lack of reli-
able assessments is responsible for false senses of security,
as presumably-strong defenses against white-box attacks
were subsequently broken by carefully-crafted adaptive at-
tacks [2]. The few defenses standing the test of time require

Figure 1. Anti-adversary classifier. The flow field of adversarial
perturbations is shown in light green for both classes C1 and C2.
The anti-adversary we construct pulls a given point x to (x + γ)
by moving in the direction opposite to that of the adversary flow.
costly training and degrade clean-sample performance [25].
Even worse, while most defenses are designed to resist
white-box attacks, fewer efforts have been invested into re-
sisting black-box attacks, which are more practical [5], e.g.
public APIs (IBM Watson, Microsoft Azure, etc.) may not
disclose information about their models’ inner workings.

In this work, we propose a simple, generic, training-free
layer that robustifies both nominally and robustly trained
DNNs. Given a base classifier f : Rn → Y , which maps Rn

to labels in set Y , and an input x, our layer constructs a data-
and model-dependent perturbation γ in the anti-adversary
direction, i.e. the direction maximizing the classifier’s con-
fidence on the pseudo-label f(x) (illustrated in Figure 1).
The new sample (x + γ) is then fed to f in lieu of x. We
dub this approach the anti-adversary classifier g. We con-
duct an extensive robustness assessment of our layer on sev-
eral datasets and under black-box, white-box, and adaptive
attacks, and find across-the-board improvements in robust-
ness over all base classifiers f .

1.1. Related Work

Given the security concerns that adversarial vulnerabil-
ity brings, a stream of works built models that both accu-
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Figure 2. The Anti-Adversary classifier. Our anti-adversary
layer generates γ for each x and fθ , and feeds (x + γ) to fθ re-
sulting into our anti-adversary classifier g).

rate and robust against attacks. Various black-box defenses
have successfully worked against such attacks [10, 18, 21].
SND [5] showed that small input perturbations can enhance
the robustness of pretrained models against black-box at-
tacks. However, the main drawback of such randomized
methods is that they can be bypassed via Expectation Over
Transformation (EOT) [3]. Once an attacker accesses gra-
dients, i.e. white-box attackers, the robust accuracy of such
defenses drastically decreases. Adversarial training (AT)
[19] and its enhanced versions [7,13] remain the most effec-
tive defenses. This was further improved by incorporating
additional regularizers such as TRADES [30] and MART
[26], or combining AT with pruning as in HYDRA [22], or
perturbing network parameters [27]

2. Methodology

Motivation. Adversary directions maximize a loss func-
tion w.r.t. the input, i.e. move input x closer to the decision
boundary, thereby minimizing the confidence on the pre-
dicted label. In this work, we leverage this and prepend a
layer to a trained model to generate a new input (x + γ),
which moves x away from the decision boundary, thus hin-
dering the capacity of adversaries to tailor attacks.
Preliminaries and Notation. We use fθ : Rn → P(Y)
to denote a classifier, e.g. a DNN parameterized by θ,
where P(Y) is the probability simplex over the set Y =
{1, 2, . . . , k} of k labels. For input x, an attacker con-
structs a small perturbation δ (e.g. ∥δ∥p ≤ ϵ) such that
argmaxi f

i
θ(x+ δ) ̸= y, where y is x’s true label. One ap-

proach to construct δ is by solving the following constrained
problem with a loss function L:

max
δ

L(fθ(x+ δ), y) s.t. ∥δ∥p ≤ ϵ. (1)

Depending on the information about fθ accessible by the at-
tacker when solving (1), the adversary can generally be cat-
egorized into one of three types. (i) Black-box: Only func-
tion evaluations fθ are available. (ii) White-box: Only fθ
and ∇xfθ are accessible, with no other intermediate layer
information available to the attacker. (iii) Adaptive: The
attacker has full knowledge about the classifier fθ, includ-
ing the θ, intermediate-layer gradients, training data, etc.
Anti-Adversary Layer. Analogous to constructing an ad-
versary by solving (1), we propose to prepend a layer that
perturbs the input to maximize the classifier’s prediction’s

Algorithm 1 Anti-adversary classifier g
Function AntiAdversaryForward(fθ, x, α, K):

Initialize: γ0 = 0
ŷ(x) = argmaxi f

i
θ(x)

for k = 0 . . .K − 1 do
γk+1 = γk − α sign(∇γkL(fθ(x+ γk), ŷ))

end
return fθ(x+ γK)

Table 1. Robustness of nominally-trained DNNs against black-
box attacks. We attack nominally-trained DNNs with Bandits and
NES (both with 10k queries), and find robustness increments when
introducing SND [5] and our anti-adversary layer (Anti-Adv). We
report accuracy and embolden best performance.

CIFAR10 ImageNet
Clean Bandits NES Clean Bandits NES

Nominal Training 93.7 17.2 4.8 79.2 58.2 21.0
+ SND [5] 92.9 84.3 25.5 79.2 73.2 60.2
+ Anti-Adv 93.7 86.4 72.7 79.2 74.4 66.0

confidence at an input, hence the term anti-adversary. For-
mally, given classifier fθ, our anti-adversary classifier g
(prepending an anti-adversary layer to fθ) is:

g(x) = fθ(x+ γ),

s.t. γ = argmin
ζ

L(fθ(x+ ζ), ŷ(x)), (2)

where ŷ(x) = argmaxi f
i
θ(x) is the predicted label. Note

our proposed anti-adversary g is agnostic to the choice of
fθ. Moreover, it does not require retraining fθ, unlike previ-
ous works [5,28] that add random input perturbations, hurt-
ing clean accuracy. This is because correctly-classified in-
stances, i.e. instances where y = argmaxi f

i
θ(x), will also

be, by construction, classified correctly by g. Thus, our
layer only increases the confidence of fθ(x)’s top predic-
tion. We illustrate our approach in Figure 2. Finally, our
layer solves Problem (2) with K signed gradient descent
iterations, zero initialization, where L is the cross-entropy
loss. Algorithm 1 summarizes g’s forward pass.

3. Experiments

We validate the effectiveness of our anti-adversary clas-
sifier g by evaluating robustness against various adversaries.
(i) We compare fθ’s robustness with our anti-adversary
classifier g against black-box attacks (Bandits [15], NES
[14] and Square [1]) both when fθ is nominally and robustly
trained. We observe significant robustness improvements
over fθ with virtually no drop in clean accuracy, while also
outperforming the recently-proposed SND [5] defense. (ii)
We experiment in the white-box setting with AutoAttack [9]
(with APGD, ADLR [9], and FAB [8]), when fθ is trained
robustly with ImageNet-Pre [13] and AWP [27]. In all ex-
periments, we do not retrain fθ after prepending our layer.



Table 2. Black-box attacks on robust models equipped with
Anti-Adv. We report clean (%) and robust accuracies against Ban-
dits, NES and Square attack on CIFAR10 and CIFAR100. Bold
values indicate highest accuracy in each experiment. Our layer
provides across-the-board improvements on robustness against all
attacks, without affecting clean accuracy.

Clean Bandits NES Square

C
IF

A
R

10

ImageNet-Pre 88.7 68.4 78.1 62.4
+ Anti-Adv 88.7 88.1 86.4 78.5

AWP 88.5 71.5 80.1 66.2
+ Anti-Adv 88.5 87.4 86.9 80.7

C
IF

A
R

10
0 ImageNet-Pre 59.0 40.6 47.7 34.6

+ Anti-Adv 58.9 58.2 55.3 42.4
AWP 59.4 39.8 47.3 34.7
+ Anti-Adv 59.4 57.7 53.8 46.4

Table 3. White-box attacks on robust models equipped with
Anti-Adv. We report clean and robust accuracies against APGD,
ADLR, and AutoAttack (AA) on CIFAR10 and CIFAR100.

Clean APGD ADLR AA

C
IF

A
R

10

ImageNet-Pre 87.11 57.65 55.32 55.31
+ Anti-Adv 87.11 78.76 79.02 76.01

AWP 88.25 63.81 60.53 60.53
+ Anti-Adv 88.25 80.65 81.47 79.21

C
IF

A
R

10
0 ImageNet-Pre 59.37 33.45 29.03 28.96

+ Anti-Adv 58.42 47.63 45.29 40.68
AWP 60.38 33.56 29.16 29.15
+ Anti-Adv 60.38 44.21 40.32 39.57

3.1. Robustness under Black-Box Attacks

We measure black-box robustness gains when prepend-
ing our layer to classifiers. This setting is interesting for
commercial APIs that only provide model predictions and
so can only be targeted with black-box adversaries.
Robustness of Nominally-Trained fθ. We experiment
with ResNet18 [12] on CIFAR10 [16] and ResNet50 on Im-
ageNet [17]. We compare the clean and robust accuracies
of fθ against SND [5], and our anti-adversary classifier. We
conduct 10k queries of two black-box attacks, Bandits and
NES, and set α = 0.01 in Algorithm 1. Following SND [5],
we evaluate on 1000 and 500 instances of CIFAR10 and
ImageNet, respectively, and report results in Table 1.

As shown in Table 1, nominally trained models are brit-
tle: while clean accuracies on CIFAR10 and ImageNet are
93.7% and 79.2%, respectively, these drop to 4.8% and
21% under black-box attacks. Moreover, while SND im-
proves robustness, i.e. to 25.5% and 60.2% on CIFAR10
and ImageNet, our proposed anti-adversary outperforms
SND across attacks and datasets. For instance, on Ima-
geNet we outperform SND by 1.2% and 5.8% for Bandits
and NES, respectively, while not hurting clean accuracy.

Robustness of Robustly-Trained fθ. The previous sec-
tion showed our anti-adversary layer improves black-box
robustness of a nominally-trained fθ. Here, we investigate
if our layer can also improve robustness when fθ is robustly
trained. We thus study black-box robustness of our anti-
adversary layer with two state-of-the-art robustly trained fθ
(IN-Pret and AWP) on CIFAR10 and CIFAR100. We re-
port robust accuracy for 1000 instances under Bandits and
NES attacks. For the more efficient Square attack, we report
robust accuracy on the full test set.

In Table 2, we report the black-box robust accuracies on
CIFAR10 and CIFAR100. Confirming previous observa-
tions, prepending our anti-adversary layer to fθ does not
hurt clean accuracy. More importantly, although fθ is ro-
bustly trained, our anti-adversary layer can still boost ro-
bustness by an impressive ∼ 15%. For instance, even
for the highest worst-case robust accuracy on CIFAR10
(AWP’s 66.18%), the anti-adversary improves robustness
by 14.53%, reaching 80.71%. Similarly, for CIFAR100 our
layer improves the worst-case black-box robustness of AWP
by 11.7%. Overall, our layer consistently improves black-
box robustness against all attacks and for all robust training
methods fθ on both CIFAR10 and CIFAR100.

3.2. Robustness under White-Box Attacks

In this setting, the attacker (1) only accesses the classi-
fier’s outputs and gradients. Note that the attacker ignores
the classifier’s inner workings and training specifications.
While this setup is less realistic than the black-box setting,
it is an interesting measure of robustness by providing more
information to the attacker, which is related to why most
prior works report performance in this category by comput-
ing accuracy under PGD [19] or AutoAttack, such as [29].

We prepend our anti-adversary layer to robustly trained
classifiers fθ and assess robustness on CIFAR10 and CI-
FAR100. We report robust accuracy against three white-
box attacks, namely APGD, ADLR and FAB, and measure
performance under AutoAttack with ϵ = 8/255 in (1).

In Table 3 we report robust accuracies on CIFAR10 and
CIFAR100, respectively. We observe that, on CIFAR10,
our anti-adversary layer remarkably improves robust accu-
racy against AutoAttack. In particular, for the strongest de-
fense we consider, AWP, adversarial robustness increases
from 60.53% to an astounding 79.21%. We observe simi-
lar results for CIFAR100. In particular, Table 3 shows that
the anti-adversary layer induces an average improvement of
∼ 11%, where the adversarial robustness of ImageNet-Pre
increases from 28.96% to over 40%. The improvement is
consistent across defenses on CIFAR100 with a worst-case
drop in clean accuracy of 1%. In contrast, integrating SND
with AWP comes at a notable drop in clean accuracy (from
88.25% to 70.03%) along with a drastic drop in robust ac-
curacy (from 60.53% to 27.04%) on CIFAR10.
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