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Abstract

We present MAD (Movie Audio Descriptions), a novel
benchmark for the video-language grounding task. We
depart from the paradigm of augmenting existing video
datasets with text annotations and focus on crawling
and aligning available audio descriptions of mainstream
movies. MAD contains over 384, 000 natural language sen-
tences grounded in over 1, 200 hours of video and exhibits
a significant reduction in the currently diagnosed biases
for video-language grounding datasets. MAD’s collection
strategy enables a novel and more challenging version of
video-language grounding, where short temporal moments
(typically seconds long) must be accurately grounded in di-
verse long-form videos that can last up to three hours. Find
out more at https://github.com/Soldelli/MAD.

1. Introduction
The natural language grounding task [1, 4] has gained

significant momentum in the computer vision community
due to the multiple potential real-world applications [2, 3,
11,12,14]. The importance of solving this task has resulted
in novel approaches and large-scale deep-learning architec-
tures that steadily push state-of-the-art performance. De-
spite those advances, recent works [7, 15, 17] have diag-
nosed hidden biases in the most common video-language
grounding datasets. In detail, the temporal anchors for the
language are temporally biased in time, leading to methods
overfitting to temporal priors, thus limiting their generaliza-
tion capabilities [6, 7] (Fig. 2). The community has tried to
circumvent these limitations by either proposing new met-
rics [15, 16] or debiasing strategies [17, 18]. However, it is
still unclear if existing grounding datasets [1,4,5,9] provide
the right setup to evaluate progress in this relevant task.

In this work, we present a novel large-scale dataset called
MAD (Movie Audio Descriptions). MAD builds atop (and
includes part of) the LSMDC dataset [10], which is a pi-
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Figure 1. Comparison of video-language grounding datasets.
The circle size measures the language vocabulary diversity. The
videos in MAD are orders of magnitude longer in duration than
previous datasets (∼110min), annotated with natural, highly de-
scriptive, language grounding (>60K unique words) with very low
coverage in video (∼4.1s). Coverage is defined as the average %
duration of moments with respect to the total video duration.

oneering work in leveraging audio descriptions to enable
the investigation of a closely related task: text-to-video
retrieval. Similar to LSMDC, we depart from the stan-
dard annotation pipelines that rely on crowd-sourced an-
notation platforms. Instead, MAD relies on audio descrip-
tions professionally created to make movies accessible to
visually-impaired audiences. These descriptions embody a
rich narrative describing the most relevant visual informa-
tion, adopting a highly descriptive and diverse language.

Fig. 1 shows that the current datasets comprise short
videos containing single structured scenes and language de-
scriptions that cover most of the video. Conversely, MAD
contains long-form videos that, on average, span over 110
minutes, as well as grounded annotations covering short
time segments, which are uniformly distributed in the video,
and maintain the largest diversity in vocabulary.

The unique configuration of the MAD dataset introduces
exciting challenges. (i) The video grounding task is now
mapped into the unexplored domain of long-form videos.

https://github.com/Soldelli/MAD


Videos Language Queries

Dataset Total Duration Duration Total # Words Total Vocabulary
Duration / Video / Moment Queries / Query Tokens Adj. Nouns Verbs Total

TACoS [9] 10.1 h 4.78 min 27.9 s 18.2K 10.5 0.2M 0.2K 0.9K 0.6K 2.3K
Charades-STA [4] 57.1 h 0.50 min 8.1 s 16.1K 7.2 0.1M 0.1K 0.6K 0.4K 1.3K
DiDeMo [1] 88.7 h 0.50 min 6.5 s 41.2K 8.0 0.3M 0.6K 4.1K 1.9K 7.5K
ANet-Captions [5] 487.6 h 1.96 min 37.1 s 72.0K 14.8 1.0M 1.1K 7.4K 3.7K 15.4K

MAD (Ours) 1207.3 h 110.77 min 4.1 s 384.6K 12.7 4.9M 5.3K 35.5K 13.1K 61.4K

Table 1. Statistics of video-language grounding datasets. We report relevant statistics to compare our MAD dataset against other video
grounding benchmarks. MAD provides the largest dataset with 1207hrs of video and 384.6K language queries, the longest form of video
(avg. 110.77min), the most diverse language vocabulary with 61.4K unique words, and the shortest moment for grounding (avg. 4.1s).

(ii) Longer videos will make the localization problem far
more challenging. (iii) The longer sequences emphasize
the necessity for efficient methods in inference and train-
ing, mandatory for real-world applications.
Contributions (1) We propose MAD, a novel large-scale
dataset for video-language grounding. (2) We design a scal-
able data collection pipeline that automatically extracts an-
notations. (3) We provide a empirical study that highlights
the benefits of our large-scale MAD dataset on the video-
language grounding task.

2. Collecting the MAD Dataset
We follow independent strategies for the training and

testing set. For the former, we aim at automatically collect-
ing a large set of annotations. For the latter, we re-purpose
the manually refined annotations from the LSMDC dataset.

2.1. MAD Training set

Data Crawling Not every commercially available movie is
released with audio descriptions. However, we can obtain
these audio descriptions from 3rd party creators. In partic-
ular, we crawl our audio descriptions from a large open-
source and online repository (www.audiovault.net).
Alignment One problem is that the audio descriptions can
be misaligned with the original movie. Since the audio de-
scription track also contains the movie’s original audio, we
can circumvent this misalignment by maximizing the cross-
correlation between overlapping segments of the original
audio track and the audio description track, obtaining in this
way the time delay τdelay. We discard the movies that do not
reach a consensus on the delay estimation.
Audio Transcriptions We transcribe the audio description
file using Microsoft’s Azure Speech-to-Text service. To re-
move the actors’ speech from the transcription, we resort to
the movie’s subtitles and use their timestamps as a surrogate
for Voice Activity Detection (VAD). We remove from the
Speech-to-Text output every sentence overlapping with the
VAD temporal locations, obtaining our target annotations.
From LSMDC to MAD Val/Test Since the annotations
in training are automatically generated, we decided to min-
imize the noise in the validation and test splits. Hence,
we avoid the automatic collection of data for these sets
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Figure 2. Histograms of normalized (by video length) moment
start/end in video-language grounding datasets. We notice se-
vere biases in ActivityNet-Captions and Charades-STA, with high
peaks at the beginning and end of the videos. Conversely, MAD
does not show any particular preferred start/end temporal location.

and resort to the data made available by the LSMDC
dataset [10]. LSMDC manually refined the grammar and
temporal boundaries of sentences. As a consequence,
these annotations have clean language and precise tempo-
ral boundaries. We reformat a subset of the LSMDC data,
adapt it for the video grounding task, and cast it as MAD’s
validation and test sets. LSMDC data for retrieval is made
available only as video chunks, not full movies. To create
data suitable for long-form video language grounding, we
collect 162 out of the 182 videos in LSMDC and their re-
spective audio descriptions. To align a video chunk from
LSMDC with our full-length movies, we follow a similar
procedure as the one described for the audio alignment, but
using visual information.

2.2. MAD Dataset Analysis

Table 1 summarizes the most notable aspects of ground-
ing datasets and compares MAD with legacy datasets.
MAD is the largest dataset in video hours and number
of sentences. The training, validation, and test sets con-
sist of 488, 50, and 112 movies with 280.5K, 32.1K, and
72.0K queries, respectively. Although other datasets have
a larger number of clips, MAD’s videos are full movies
which last 2 hours on average. In comparison, the average
clip from other datasets spans just a few minutes. More-
over, MAD contains the largest set of adjectives, nouns,
and verbs among all available benchmarks. In almost ev-
ery case, it is an order of magnitude larger. Overall, MAD
contains 61.4K unique words, almost 4 times more than
the 15.4K of ActivityNet-Captions [5] (the highest among
the related benchmarks). The average length per sentence

www.audiovault.net


IoU=0.1 IoU=0.3 IoU=0.5

Model R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

Oracle 100.00 − − − − 100.00 − − − − 99.99 − − − −
Random Chance 0.09 0.44 0.88 4.33 8.47 0.04 0.19 0.39 1.92 3.80 0.01 0.07 0.14 0.71 1.40
CLIP [8] 6.57 15.05 20.26 37.92 47.73 3.13 9.85 14.13 28.71 36.98 1.39 5.44 8.38 18.80 24.99
VLG-Net [13] 3.64 11.66 17.89 39.78 51.24 2.76 9.31 14.65 34.27 44.87 1.65 5.99 9.77 24.93 33.95

Table 2. Benchmarking of grounding baselines on the MAD dataset. We report the performance of four baselines: Oracle, Random
Chance, CLIP, VLG-Net, on the test split. For all experiments, we adopt the same proposal scheme as in VLG-Net [13]. For CLIP and
VLG-Net we use CLIP [8] features for video frames (extracted at 5 FPS) and language embeddings.

is 12.7 words, which is similar to the other datasets. Fi-
nally, note how the average moment duration (4.1 seconds)
is shorter with respect to previous dataset, yielding a very
low coverage and making the task challenging.

3. Experiments
Task Given an untrimmed video and a language query, the
video-language grounding task aims to localize a temporal
moment (τs, τe) in the video that matches the query [1, 4].
Metric Following the grounding literature [1, 4], we adopt
Recall@K for IoU=θ (R@K-IoU=θ). Given the long-
form nature of our videos and the large amount of proposals,
we chose K∈{1, 5, 10, 50, 100} and θ∈{0.1, 0.3, 0.5}.
Baselines We adopt four grounding strategies, namely: Or-
acle, Random Chance, CLIP [8], and VLG-Net [13]. Oracle
measures the upper bound on the performance by choosing
the proposal with the highest IoU with the ground-truth an-
notation. Random Chance chooses a random proposal with
uniform probability. CLIP [8] is used in a zero-shot setting.
The frame-level features for each proposal are combined us-
ing mean pooling, then we score each proposal using cosine
similarity between the visual and the text features. Finally,
we adopt VLG-Net [13] as a representative, state-of-the-art
method for the grounding task.
Grounding Performance on MAD As shown in Table 2,
the Oracle evaluation achieves a perfect score across all
metrics except for IoU=0.5. Only a negligible portion of
the annotated moments cannot be correctly retrieved at a
high IoU (0.5), this result showcases the suitability of the
proposal scheme. The low performance of the Random
Chance baseline reflects the difficulty of the task, given the
vast pool of proposals extracted over a single video. For
the least strict metric (R@100-IoU=0.1), this baseline only
achieves 8.47%, while CLIP and VLG-Net baselines are
close to 50%, a ∼6× relative improvement. The CLIP [8]
baseline is pre-trained for the task of text-to-image retrieval,
and we do not fine-tune this model on the MAD dataset.
Nevertheless, when evaluated with a zero-shot setting, it re-
sults in a strong baseline achieving the best R@K for the
least strict IoU=0.1 at K={1, 5, 10}. Conversely, VLG-
Net is trained for the task at hand, but achieves comparable-
to-better performance only when a strict IoU (IoU=0.5) is
considered. We believe the shortcomings of VLG-Net are
due to two factors. (i) This architecture was developed to
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Figure 3. Performance trend across different windows lengths.
Performance of deep learning based methods steadily decrease as
the window evaluation window length increases.

ground sentences in short videos, where the entire frame-
set can be compared against a sentence in a single forward
pass. Thus, it struggles in the long-form setup where we
compare the sentence against segments of the movie and
then aggregate the predictions. (ii) VLG-Net training pro-
cedure defines low IoU moments as negatives, thus favoring
high performance only for higher IoUs.
The Challenges of Long-form Video Grounding We in-
vestigate how the performance changes when the evaluation
is constrained over segments of the movie, and vary the size
of the segment. To this end, we split each video into non-
overlapping windows (short videos), and assign the annota-
tions to the short-video with the highest temporal overlap.
Figure 3 showcases the performance trend for the metrics
R@{1, 5}-IoU=0.5, when the window length is changed
from a small value (30 seconds) to the entire movie dura-
tion (average duration is 2hrs). The graph displays how the
performance steadily drops as the window length increases,
showing the challenging setup of long-form grounding en-
abled by MAD.

4. Conclusion
The paper presents a new video grounding benchmark

called MAD, which builds on high-quality audio descrip-
tions in movies. MAD alleviates the shortcomings of previ-
ous grounding datasets. Our automatic annotation pipeline
allowed us to collect the largest grounding dataset to date.
The experimental section provides baselines for the task
solution and highlights the challenging nature of the long-
form grounding task introduced by MAD.
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