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Abstract

In this work we explore using synthetic computer-
generated data to fully control the visual and language
space, allowing us to provide more diverse scenarios. We
quantify the effectiveness of leveraging synthetic data for
real-world VQA. By exploiting 3D and physics simula-
tion platforms, we generate synthetic data to expand and
replace type-specific questions and answers without risk-
ing exposure of sensitive or personal data that might be
present in real images. We offer a comprehensive analysis
while expanding existing hyper-realistic datasets to be used
for VQA. We also propose Feature Swapping (F-SWAP)
– where we randomly switch object-level features during
training to make a VQA model more domain invariant. We
show that F-SWAP is effective for improving VQA models
on real images without compromising on their accuracy to
answer existing questions in the dataset.

1. Introduction
Data augmentation is an effective way to achieve bet-

ter generalization on several visual recognition and natu-
ral language understanding tasks. Existing work on Visual
Question Answering (VQA) has explored augmenting the
pool of questions and answers or by perturbing or mask-
ing some parts of the images [1, 5, 9]. Moreover, curating
large-scale datasets is a laborious task and sourcing images
is an expensive process that needs to account for practical
issues such as copyright and privacy. Augmenting existing
datasets with synthetically generated data offers a path to
enhance our existing data-driven models at a lower cost.

Our work focuses on leveraging synthetically gener-
ated data through the use of modern 3D generated com-
puter graphics using a couple of novel resources – Hyper-
sim [7] and ThreeDWorld (TDW) [2]. We also propose fea-
ture swapping (F-SWAP), a simple yet effective method to
augment a currently existing VQA dataset with computer
graphics generated examples1. Existing methods for do-

*Work partially done while interning at the MIT-IBM Watson AI Lab
1Project page: https://simvqa.github.io/
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Q/ How many chairs are in 
the photo? A/ 2

Q/ What color are the 
flowers? A/ pink

Q/ Is there a fire hydrant in 
the picture? A/ yes

Q/ How many chairs are in 
the room? A/ 6

Q/ What color is the bed 
cover? A/ white

Q/ Is there a dog in the 
kitchen? A/ no

Q/ How many chairs are in 
the picture? A/ 2

Q/ What color is the fire 
hydrant? A/ yellow

Q/ Is there a teddy bear on 
top of the table? A/ yes

Figure 1. Training samples for VQA from real and synthetic
datasets. The first row shows existing examples from the VQA 2.0
dataset. The second row shows examples from Hypersim [7], a
hyper-realistic synthetic dataset we extend for VQA. The third row
shows some examples we generate using ThreeDWorld [2].

main adaptation rely on the assumption that adaptation can
be addressed by making the out-of-domain samples match
the distribution of the in-domain samples. However cur-
rent work often operationalizes this assumption by making
the input images themselves look more like the real images
e.g. [4, 8, 10]. Feature Swapping relies instead on swap-
ping random object-level intermediate feature representa-
tions. We posit that unless realistic style-transfer is de-
sired from the input domain to the target domain, as long
as the two domains are matched at the feature level – do-
main adaptation can take place. We explain and compare
our F-SWAP approach with other methods such as adver-
sarial domain adaptation and demonstrate superior results.

Our contributions can be summarized as follows:
• Synthetic datasets: We are providing an extension of

the Hypersim dataset for VQA, and provide a synthetic
VQA dataset using ThreeDWorld.

• Feature swapping: We are proposing a surprisingly
simple yet effective new technique for incorporating
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d) Image Generation (e.g., we swap objects in the scene to augment the set)

1) Q/ What is on top of the table? 
A/ a brown backpack

2) Q/ What is on top of the table? 
A/ a red lamp

3) Q/ What is to the right of the table? 
A/ a red lamp
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Figure 2. Sample pipeline for generating VQA data using Three-
DWorld. a) Manually select scenes from a set of random camera
walks. b) Select one of the generated scene graphs containing ob-
ject information such as positions, number, color, and materials. c)
Generate question-answer pairs following a template based on the
scene graph. d) Finally, generate images by placing objects and
modifying characteristics of the scene based on steps b and c.

synthetic images in our training data while mitigating
the domain shift.

• Experimental results: We are providing an empirical
analysis of well known techniques vs our proposed ap-
proach to alleviate the visual domain gap.

2. Synthetic Datasets
First, we describe the generation of a VQA dataset by

extending the existing Hypersim dataset [7] (section 2.1).
We name this dataset Hypersim-VQA, or H-VQA, for short.
Then we explore the automatic creation of a VQA Dataset
using ThreeDWorld [2] (section 2.2). We name this dataset
ThreeDWorld-VQA, or W-VQA, for short.

2.1. Extending Hypersim for VQA

Hypersim [7] is an existing 3D graphics generated
dataset with a high image quality and displays a diverse
array of scenes and objects. Hypersim metadata includes
the complete geometry information per scene, dense per-
pixel semantic instance segmentations for every image, and
instance-level NYU40 labels annotations. We extend these
data by manually annotating objects on all images given
their dimensions and positions in the scene. We generate
questions and answer pairs based in the visibility of an ob-
ject in a scene frame. We call this new set Hypersim-VQA.

2.2. Automatic VQA Generation

TDW [2], is a platform for interactive multi-modal phys-
ical simulation that we use to generate images. We follow
the steps shown in Figure 2 to generate the image I , ques-
tion Q and answer A triplets for our W-VQA dataset. Ques-
tions and answers are generated following a template based
grammar associated with a predefined scene graph and it’s

Feature backbone Feature size
Training data R-VQA

Real Synthetic Accuracy

R H W Numeric

FastRCNN – RN101 100×2048
✓ 42.73
✓ ✓ 44.70+1.97
✓ ✓ 42.86+0.13

CLIP - RN50 558×2048
✓ 42.83
✓ ✓ 43.61+0.78
✓ ✓ 42.91+0.08

CLIP – ViT-B 85×512
✓ 41.93
✓ ✓ 43.98+2.05
✓ ✓ 41.35–0.58

Table 1. Data augmentation using synthetic data improves Real-
VQA performance (R-VQA) on numeric questions, especially
when using Hypersim-VQA (H). In all these experiments only
counting questions were used for training from both the existing
Real-VQA dataset, VQAC (R) and our synthetic dataset variants:
Hypersim-VQA (H) and TDW-VQA (W).

corresponding image. In our setup, a noun is directly associ-
ated with the model object label category from the TDW as-
set, position is taken from the relationship between objects
from the scene graph, and number, adjective color and ad-
jective material are taken from the attributes selected when
generating the graph and the synthetic image.

3. Feature Swapping

Given a triplet of images I , questions Q and answers
A, we have access to three datasets from different do-
mains, where (IR, QR, AR) ∈ R correspond to a Real-
VQA dataset consisting of real images (we use VQA 2.0
[3]), (IH , QH , AH) ∈ H correspond to the Hypersim-
VQA dataset, and (IW , QW , AW ) ∈ W correspond to
the TDW-VQA dataset. We assume that the images and
their corresponding questions are inputs to a VQA model,
and the objective is to predict as output the correspond-
ing ground-truth answers. Given an image I , we use a
pre-trained model G to extract the image region features
Gf (I) = {f1, f2, ..., fn} along with their correspond-
ing pseudo-labels Gsl(I) = {sl1, sl2, ..., sln} which are
assigned based on the attribute annotations from Visual
Genome [6]. Since we have access to all images from
the three sets, we create a dictionary Dtype per dataset with
type = R ∨ H ∨ W , where the [key, value] of a dictionary
Dtype corresponds to the pseudo-label (sli)type, and all the
region features [(fi)type, ..., (fm)type] that the model G as-
sign as (sli)type respectively. Once we retrieve the informa-
tion for all the dictionaries DR, DH , DW , we use them to
swap features from one dataset to the other. While training,
when sampling datapoints from R, we randomly select an
Image IR and get all the region features Gf (IR) and its cor-
responding pseudo-labels Gsl(IR). Since we have access



Data Method
+0% R-VQAC +1% R-VQAC +10% R-VQAC

Numeric Others Overall Numeric Others Overall Numeric Others Overall

H-VQAC Simple Augmentation 15.99 68.97 62.02 29.64 68.45 63.34 35.72 68.61 64.29
H-VQAC Adversarial 16.07+0.08 66.01–2.96 59.46–2.56 28.31–1.33 66.89–1.56 61.83–1.51 35.01–0.71 66.91–1.7 62.71–1.58

H-VQAC MMD 24.79+8.80 67.13–1.84 61.58–0.44 31.61+1.97 67.78–0.67 63.04–0.30 38.87+3.15 68.36–0.25 64.49+0.2

H-VQAC Domain Independent 22.87+6.88 68.65–0.32 62.64+0.62 29.05–0.59 68.73+0.28 63.52+0.18 37.67+1.95 69.34+0.73 65.17+0.88

H-VQAC Feature Swapping (F-SWAP) 23.38+7.39 69.07+0.10 63.07+1.05 31.64+2.00 69.08+0.63 64.15+0.81 39.71+3.99 69.13+0.52 65.26+0.97

W-VQAC Simple Augmentation 21.18 68.91 62.65 31.18 68.97 64.01 38.47 68.86 64.87

W-VQAC Feature Swapping (F-SWAP) 26.84+5.66 68.89–0.02 63.67+1.02 31.21+0.03 68.82–0.15 63.89–0.12 38.54+0.07 68.97+0.11 64.97+0.10

Table 2. Counting skill learning under different low-regime settings for Real VQA counting questions (R-VQAC ). All models share the
basic training set: VQANC (the non-counting subset of VQA v2 training data).

to all dictionaries, we lookup for the pseudo-labels that also
exist in DH∨DW , for simplicity, DS = DH∨DW , thus, af-
ter obtaining Gsl(IR) ∈ DS we proceed to randomly select
a portion λ|Gf (IR)| of the corresponding pseudo-labeled
features in DS and replace them with the matching features
in IR. In all of our experiments, λ = 0.2.

4. Experimental Settings

Real-VQA Dataset. Following Whitehead et al [11]’s
skill-concept separation for compositional analysis, we take
the VQA 2.0 dataset [3], and separate the counting ques-
tions for a detailed analysis on how synthetic data may
affect a model performance. For training, we create two
different splits: R-VQAC that corresponds to the training
set with only counting questions, and R-VQANC which
corresponds to the VQA 2.0 training set without count-
ing questions. R-VQAC contains 48, 431 datapoints, and
R-VQANC contains 378, 018 datapoints. For testing, we
use the standard VQA 2.0 validation set and report our
results on Numeric questions, where ∼85% of the ques-
tions correspond to counting questions, Others, and Over-
all for the general accuracy. Hypersim-VQA. We gen-
erate 254, 174 counting questions for 41, 551 images. In
our experiments, we use a subset of 20, 000 questions that
only containe NYU40 labels (excluding otherstructure, oth-
erfurniture and otherprop) and include 10, 000 randomly
selected from the extra annotated labels. We also gener-
ate 40, 000 yes/no questions probing whether an object is
present in an image. TDW-VQA. We generate 33, 264
counting related datapoints and add 30, 000 yes/no ques-
tions to the same images. Additionally, we generate 12, 000
extra images and add color and material questions, for a to-
tal of 87, 264 automatically generated datapoints using the
ThreeDWorld simulation platform. Base VQA model. We
select the top-performing model without large-scale pre-
training [12] as our base model. Our base code follows the
hyper-parameter selection included in their publicly avail-

able implementation2.

4.1. Data augmentation experiments.

We evaluate the effect of augmenting Real-VQA data
with the proposed synthetic datasets. We are interested to
test if the ability of VQA models to answer counting ques-
tions on synthetic data could improve the counting perfor-
mance on real VQA data. Table 1 shows that, under differ-
ent feature backbones, the performance of counting ques-
tions on real data is improved when R-VQAC is augmented
with the proposed H-VQA dataset.

4.2. Domain alignment experiments.

We explore to what extent skill learning using synthetic
data can be helped by explicit alignment of visual features
between two domains. The real data used in this experi-
ment includes R-VQANC , as well as R-VQAC under three
different regimes (0%, 1%, 10%). Table 2 summarizes the
experimental results when using different domain alignment
approaches. The results suggest that Feature Swapping out-
performs the baseline and other domain alignment methods,
and produces consistent gains on counting questions as well
as the overall accuracy, across different regimes of VQAC .

5. Conclusion
In this work we explored the efficacy of VQA datasets

generated using 3D computer graphics to incorporate new
skills into existing VQA models trained on real data. We
particularly showed that we can teach a VQA model how
to count objects in the real world by using only synthetic
data while not decreasing the model performance on other
types of questions. This is challenging since real and syn-
thetic datasets often exhibit a large domain gap. We further
proposed F-SWAP as a simple yet effective technique for
domain adaptation that is competitive and surpasses previ-
ous methods in our experiments.

2https://github.com/MILVLG/mcan-vqa
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