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Abstract

The research advancements to develop a computer vi-
sion system that maps a user foot to a shoe last are pre-
sented. The system consists of a developed 3D scanner and
algorithms to process the scene to extract parametric curves
from the foot’s surface. The shoe last design requirements
are encoded in the parametric curves using a process of
optimization subject to bounds and constraints, from those
curves the surface of the shoe last will be created. This is
work in progress.

1. Introduction
Technologies to 3D scan objects are becoming more ac-

cessible, at the same time, 3D acquired data from the human
body allows to create personalized products [4, 6, 8]. The
presented research proposes to create an automatic Artifi-
cial Intelligent system that maps a user’s feet to a shoe last
(mold that gives a shoe its shape). The shoe last would al-
low a shoemaker to manufacture shape personalized shoes,
this is relevant as shoe’s mass manufacture with one width
per length only covers 40.1 percent of the population with
a proper shoe, even with 3 widths per length there will be
13.2 percent of the population that will not find a given shoe
model with a right size [2]. People without access to proper
shaped shoes might use constricting footwear that can de-
velop health issues such as bunionettes or hammer toes [5].

Similar systems to the proposed modify a base shoe last
to fit the user’s feet, either relying on human operators [3] or
extracting features to guide the modifications [11]. The sys-
tem described in this work does not require a base shoe last,
instead, it encodes the design requirements in optimization
constraints.

The following structure is followed to explain the re-
search advancements: in Section 2, the 3D Scan system
is explained; in Section 3, the foot localization, orientation
and semantic segmentation are explained; in Section 4, the
extraction of curves from the process is described. Finally,
in Section 5, the conclusions and future work are discussed.

Figure 1. Example of a 3D feet scan.

2. 3D scanner
The 3D scanner used to digitalize the feet is based on the

Open3D’s Offline Legacy Reconstruction System (OOLRS)
[14]. The original system requires as input an RGB-D se-
quence which is partitioned to create local geometry sur-
faces (fragments) {Pi} from continuous frames, then odom-
etry between fragments {Ti} is computed and a global pose
graph is created, a third step does global optimization of the
pose graph and finally all RGB-D frames are integrated into
a single 3D model.

The RGB-D sequence is captured with a handheld Intel®

RealsenseTM L515 depth camera with intrinsic values of
1024x768 of depth resolution and depth scale of 4000.
Three modifications were done to OOLRS to improve the
quality of the reconstruction: first, Visual odometry is
changed to Visual-Inertial odometry; second, depth image’s
noise is filtered; third, a sliding window between fragments
is implemented. An example of the reconstruction is shown
in Figure 1.

2.1. Odometry

Open3D’s legacy offline reconstruction system computes
relative odometry between RGB-D images at the initial
stage of the reconstruction. The initial computation of the
visual odometry is replaced with the odometry captured
with Intel® RealsenseTM T265 tracking camera. This odom-



etry sensor was selected for its availability and good evalu-
ations against the baseline ORB-SLAM2 [1].

T265 captures global pose of its reference frame, but
Open3D reconstruction system requires relative poses of the
RGB-D sensor. To compute L515 camera’s global pose an
homogeneous transformation matrix SO(3) is used to trans-
form T265 global pose to L515 global pose. With L515
global pose it is possible to compute relative poses {G} as
Open3D requires.

GL515
s−t = X−1 (1)

GL515
s X = GL515

t (2)

Where GL515
s and GL515

t are the global poses of the
source and target RGB-D frames. From Eq. 2, X is solved
so it can be used in Eq. 1 to solve GL515

s−t which is the rela-
tive pose required by OOLRS.

2.2. Depth noise filter

A filter applied to each depth image improves the quality
of the OOLRS reconstruction. The filtered depth images are
used to integrate the 3D scene by the reconstruction system.
The original depth images are used to refine the pose graphs
of the scene, as better results were observed with this setup.
The filter is composed of well known image processing al-
gorithms implemented in the following sequence with the
OpenCV library: Morphological gradient (Scharr), simple
image threshold, image opening, image closure. The closed
image is used as mask to set to zero pixels of the original
depth image, finally a bilateral filter is applied. All kernels
have sizes of 3x3 and the value of the simple image thresh-
old equals 21.

2.3. Sliding window

The first stage of the reconstruction creates fragments
from a subset of continuous RGB-D frames. The original
code of OOLRS do not have RGB-D frames overlap be-
tween fragments. A better reconstruction was possible by
adding an overlap of 10 frames between fragments.

3. Foot segmentation and orientation
A process to segment and orient each foot is done to

make the system invariant to SO(3) homogeneous transfor-
mations of the feet scan. The process used is the one de-
scribed in [12], the algorithm parameters are adapted to the
reconstruction quality obtained with the L515 sensor. The
foot segmentation and orientation returns a point cloud for
each foot where the system coordinate’s origin is located
at the back of the heel, X positive axis points towards the
foot’s width, Y positive axis towards the toes and Z positive
axis towards the knee, the XY plane lies over the floor, see
Figure 2a.

4. Curves approximation
With the 3D model of the foot and a known localization

and orientation as priors, it is possible to extract curves of
interest for the creation of the shoe last surfaces, see Figure
2c. The framework selected for this task is the B-Spline
parametric curve [10]. The general process includes:

1. A plane is defined with a point and a normal vector.
2. All points within a threshold distance from the plane

are selected.
3. All selected points are projected into the plane.
4. The points are sorted counter clockwise with the

plane’s normal vector as rotation axis.
5. An equidistant sampling of the points is created.
6. Through least square fit, a B-Spline curve approxi-

mates the equidistant sampled points.
7. The B-Spline is used as initial guess for an optimiza-

tion of the position vectors Bi of the control polygon
vertices subject to bounds and constraints.

For the creation and the least square fitting of the
B-Spline the Splipy library is used [7]. The optimizations
with bounds and constraints are done with the library SciPy
[13]. The optimizations allow to encode the design require-
ments in the B-Spline to create the shoe last’s surfaces. The
optimization problem is explained for two curves: the in-
sole curve and the girths over the metatarsals bones as other
foot zones are still under development.

4.1. Bottom pattern design

The insole of the shoe follows the bottom pattern design
of the last, which follows the shape of the foot outline. The
foot outline can be modeled with a set of 8 control points
through a NURBS curve [9]. For the insole, a third order
periodic B-Spline with uniform knot vector and 8 control
points is chosen (Figure 2b), this ensures continuity up to
the curve’s first derivative. Before creating the equidistant
sampling, the toe zone points are replaced with the convex
hull of the inlier points to the plane so the footprint is ob-
tained as shown in Figure 2b. The constrained optimization
problem used to encode the shoe last design requirements is
defined as follows:

1. Minimize the sorted points not overlapped by the B-
Spline curve when plotted in the same graph.

2. The search area for each control point Bi is within a
radius of 1.5 cm from its initial position.

3. As constraint, the absolute difference between the two
heel control points {B0, B1} must be lower to 5 mm
in the Y axis direction.

The above optimization is done for each control polygon
vertex Bn with it’s preceding and consecutive control points



(a) Foot segmentation, local-
ization and orientation.

(b) Footprint points (circles), B-Spline
curve approximation (line), 8 control
points (stars).

(c) Illustration of the different steps carried to map the foot surface
to the shoe last surface.

Figure 2. Workflow to create shoe last surfaces from parametric curves.

Bn−1 mod 7, Bn+1 mod 7. As the curve is periodic, negative
indexing of arrays are used.

The control polygon vertices around the toes {B4, B5}
are translated 1.5 cm in the positive Y direction as the shoe
last require a toe allowance and the optimization process
produces a B-Spline that follows the foot print.

4.2. Metatarsal girth

To approximate a metatarsal girth a third order B-Spline
with open uniform knot vector and 5 control points is cho-
sen. This selection let us fix the endpoints of the curve
which must be in the insole’s curve. As we can see in Fig-
ure 2c, the curve will be used to create the upper surface of
the shoe last in the metatarsal region of the foot. Equidis-
tant sample points of the convex hull are obtained and then
sorted. Once again, the least-square fit of the B-Spline is
used as initial guess for the optimization. The optimization
problem is defined as follow:

1. The parameter to optimize is the length x between the
first B0 and the second B1 control point

2. Minimize the curve length difference between the con-
vex hull and the B-Spline.

3. The angle between the line B0B1 and the X axis must
be 75°

4. The distance between the control points B3, B4 is a
fixed fraction of the distance between B0 and B1. The
angle between the line B3B4 and the X axis is 105°.

Further curves need to be approximated to complete the
design of the shoe last. The process will be similar to the
described with the main differences over the bounds and
constraints of the optimization as this helps to encode the
design requirements for the shoe last.

5. Conclusions

Future users of real time 3D scanner devices will create
larges amounts of 3D data that can be used beyond the vir-
tual world. The authors propose a computer vision system
that maps a human’s feet to a pair of personalized shoe lasts
that can be manufactured with a 3D printer, without expert
knowledge. A a shoe maker can use it to create personal-
ized shoes, not only in fashion or function but also in shape.
Such a system will help people that can not find proper sized
shoes to reduce their risk to suffer foot deformities.

The system consist of a handheld 3D Scanner based on
the RealsenseTM L515 RGB-D sensor and RealsenseTM T265
tracking sensor. To integrate the frames captured by the de-
vice a modified version of the Open3D legacy offline re-
construction system is used. The modifications improve the
accuracy of the 3D model captured.

With the 3D feet model a process to segment and orient
each foot is followed. Once the foot orientation is known
the insole pattern and other patterns along the foot’s length
can be extracted. Each pattern requires an optimization
process that encodes the shoe last design characteristics re-
quired for the different zones of the foot.

The research can be helpful for other scenarios, for ex-
ample to create sew patterns for personalized clothes or to
do inverse engineering of mechanical pieces. Future work
can use Reinforcement Learning to capture in a deep neu-
ral network the rules to create the B-Spline curves from the
foot surface.
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