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Abstract

Diabetic retinopathy (DR) is the primary cause of blind-
ness in developing and developed countries and the early-
stage DR detection reduces the risk of blindness in Di-
abetes Melitus (DM) patients. The image classification
systems based on Deep Learning (DL) could improve the
timely recognition of Diabetic Retinopathy (DR) features by
a medical specialist. However, these benefits have yet to
be demonstrated real-world clinical applications. One pos-
sible reason is that machine learning systems are trained
and tested only on high-quality datasets, while in practi-
cal applications, the input images cannot be assumed to
be of high quality. In this context, we propose a new
simple light weight Convolutional Neural Network (Con-
vNet) architecture capable of classifying Retinal Fundus
Photograph (RFP) quality for DR screening training from
scratch. In particular, we take care not only in the classi-
cal image-quality degradations such as noise, blur, contrast
but also in the visibility of the specific anatomical regions
(optical nerve, fovea area, and arcade) which are very im-
portant to DR detection screening. In addition, we collected
images from different datasets to improve the robustness of
the model. The accuracy of the proposed model is 98.7 %
with fewer parameters, less training, and inference time (78
% faster) in comparison with three state-of-the-art Convo-
lutional Neural Network architectures.

1. Introduction
Image quality is an essential challenge to practical im-

plementation [8], and this is commonly overlooked in
the design of DL systems, as these systems are trained
and tested on high-quality image datasets [3, 11]. These
shortcomings could be more dramatic for medical applica-
tions [3]. The global population in 2019 with DM is 463

million and the estimation to 2045 is up to 700 million [20].
DR is a complication of DM [1] and is the primary cause of
blindness in developing and developed countries [6]. The
DR global prevalence in Africa is 35.90%, North American
and the Caribbean with 33.30% and in South and Central
America 13.37% [20]. According to International Council
of Ophthalmology (ICO) [1], the early-stage DR detection
reduces the risk of vision loss and blindness in DM patients.
Due to some RFP of DR showed outstanding lab classifica-
tion performance [21], the model’s accuracy in real appli-
cations decreases significantly [3]. To face the problem of
DR-RFP quality classification, a new lightweight Convolu-
tional Neural Network (CNN) is proposed. Note that, we
take into account the image quality metrics blur, noise and
low contrast, in addition we evaluate visibility of the most
important anatomical regions for DR for example, macula,
optic nerve and arcades. Moreover, we selected the most
representative severe DR lesions (drusen, microaneurysm,
exudades, and hemorrhages) to avoid the DR-lesion/artifact
confusion.

2. Data and labeling
The data was collected from different public data sources

to improve the robustness of the model: Kaggle [9], MES-
SIDOR II [7], DRIMDB [17], IDRID [5], DRIVE [22].
The Label 0 corresponds to low quality images, i.e. images
where the optic nerve, macula or arcades are not visible due
to blur, noise, illumination problems, artifacts, and Label 1
corresponds to acceptable quality images even with severe
DR lesions (drusen, microaneurysm, exudades, and hemor-
rhages), see examples for each class Figure 1). The training
dataset was split using the hold-out strategy.

2.1. Data selection for labeling

The bad quality RFPs are difficult to find due to the im-
ages are heterogeneous in terms of size, Blur (B), Con-
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Figure 1. Examples for human labeling based on visual content
considerations, a) Visible optical nerve, macula and vessels b) Vis-
ible exudates , c) Visible hemorrhages , d) Visible Neo-vessels and
capillaries, e) Blurred image, f) Dark image, g) Flash artifact, f)
Macula not visible and flash artifact

trast (C), and Signal-to-Noise Ratio (SNR). To avoid label
all the images (around of 35,000 images), we pre-selected
some images (using a k-means) and then labeled the RFP
(by a human) as the diagram presented in Figure Fig. 2. In
order to pre-select the images, first, we measured three non-
reference image quality measurements (B,C and SNR) us-
ing OpenCV-Python library [13]

B = σ2(∆(I)), C = σ(Igray), SNR =
µ(I)

σ(I)
,

where I = I(r, g, b), r, g, b ∈ {0, 255}, r, g, b are the red,
green and blue components, Igray is the gray representation
of the image, ∆ is the Laplacian operator and µ, σ and σ2

are the mean, standard deviation, and variance of the image,
respectively.
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Figure 2. Flow diagram of the data pre-selection and labeling.
The final label is assigned by a human based on the visual criteria
proposed in [14].

Once the measurement is done, we group with K-means
[15] (k=3), and we obtain the criteria ranges for label 0 and
label 1, detailed in expression 1 and 2

Label 0 =


SNR < 1,

10 > B > 64,

0.12 > C > 0.27

(1)

Label 1 =


SNR > 1,

10 < B < 64,

0.12 < C < 0.27

(2)

Finally, the pre-selected images (based on the K means)
were exterminated by a human and define the final label.
We consider the visibility of the anatomical content (op-
tic nerve, macula and arcade) of the RFP based on [14]. In
addition, we considerate for high-quality image label exam-
ples from all DR- levels, specially examples, with microa-
neurysms, neovessels, hemorrhages, and exudates.

2.2. DRNet-Q and other ConvNet Benchmarks

Tab. 1 shows a summary of the proposed architecture.
We selected a 5× 5 window convolution as the top layer to
detect the relatively big size artifacts features. Then we use
a batch layer normalization to speed up the training process
[12]. The rest of the architecture was proposed based in
our experience. The performance of the proposed ConvNet
were compared to three pre-trained state-of-the-art CNNs
i)Inception v3 [19], w ii) Inception [18] ; and iii) ResNet-
50 [10]. For all CNNs, we train under the same conditions,
which are SGD optimizer, 64 batch size, 0.001 Learning
rate and 100 epochs. Hardware specifications for training
and testing are Intel Core i7 @4GHz, 64GB RAM and 2
Nvidia 1080 GPUs. For testing purposes only, a system
based on Intel core i3 CPU @2.4GHz, 8GB RAM has been
used. As well as, an integrated system Jetson TX2 Denver
CPU, 8GB RAM DDR4 and GPU-Nvidia Pascal.

Table 1. DRNet-Q summary architecture.

Layer Size Dimensions Activation Parameters

conv2d 1 5x5 256x256x96 ReLU 7296
conv2d 2 5x5 256x256x64 ReLU 153664
Max pooling 2x2 128x128x64 NA 0
batch norm. NA 128x128x64 NA 256
conv2d 3 3x3 128x128x128 ReLU 73856
conv2d 4 3x3 128x128x128 ReLU 147584
Max pooling 2x2 64x64x128 NA 0
batch norm. NA 64x64x128 NA 512
conv2d 5 3x3 64x64x128 ReLU 147584
conv2d 6 3x3 64x64x128 ReLU 147584
Max pooling 2x2 32x32x128 NA 0
batch norm. NA 32x32x128 NA 512
conv2d 7 3x3 32x32x64 ReLU 73792
conv2d 8 3x3 32x32x64 ReLU 36928
Max pooling 2x2 16x16x64 NA 0
batch norm. NA 16x16x64 NA 256
conv2d 9 3x3 16x16x32 ReLU 18464
Max pooling 2x2 8x8x32 NA 0
batch norm. NA 8x8x32 NA 128
Flatten NA 1x2048 NA 0
Dense NA 1x64 ReLU 131136
Dropout(0.5) NA 1x64 NA 0
Dense NA 1x32 ReLU 2080
Dropout(0.4) NA 1x32 NA 0
Dense NA 1x2 Softmax 66



3. Results and analysis
Tab. 3 presents the Area Under Curve (AUC) of the ROC

curve, sensitivity (Sen), and specificity (Spe) from different
models. The first three rows show similar works mainly
based on transfer learning techniques [2, 4, 23] and with a
mixture of public and provate datasets. According to the re-
sults The DRNet-Q has similar or better performance when
compared to Inception V3, Inception V4 and ResNet-50 us-
ing the same data and hardware conditions.

On the other hand, the computational performance is
compared in the Tab. 2. DRNet-Q achieves the shortest
training time, with a factor between 1.25 to 2.76 times faster
respect to the other CNNs. As well as the inference time of
DRnet-Q on low-performance hardware with respect to tra-
ditional models, is 1.78 to 12 times faster.

Regarding the explicability of the model, we compute
the activation maps generated by the Grad CAM [16] over
two examples (see Fig. 3) of each class using DRNet-Q in
layer conv2d 9 . The activation map of class 0, highlights
the area with more brightness (artifact). In contrast, the
activation map of the class 1 images focuses on two main
anatomical areas, such as the optic nerve and the macula,
important anatomical areas to detect DR.

(a) Bad

(b) Good

Figure 3. DRNet-Q Gradient-weighted activation map for each
class.

4. Conclusions
In this work, a new simple ConvNet architecture trained

from scratch to classify the image quality of RFP is pre-
sented. The activation maps of the proposed ConvNets con-
firm that CNN finds the most important anatomical features
of the RFP. According to the results, performance (AUC,
sensitivity, specificity) of the proposed CNN does not sig-
nificantly differ from three state-of-the-art ConvNets. How-

Table 2. Computational resources and time processing compari-
son.

Model Train
(Hrs)

Params
(M)

Mem
(GB) Speed (sec)

GPU CPU TX2

InceptionV3 1.21 115 1.29 2.24 5.47 5.87
InceptionV4 2.29 154 1.46 5.05 13.9 14.4
ResNet50 1.04 126 1.09 1.40 3.00 2.66
DRNet-Q 0.83 0.94 0.08 0.51 1.16 1.49

Table 3. State of the art review and model comparison.

Work Dataset Results
AUC Sen Spec

Zago et al. [23]
DRIMDB,
ELSA-Brasil. 98.5% 92.0% 96.0%

Chalakkal, et al. [4]

DRIMDB,
HRF,
MESSIDOR,
UoA, IDRID,
DR1-DR2
and Kaggle.

97.47% 98.38% 95.19%

Alais et al. [2] OPHDIAT 97.1% 99.0% 95.3%

Inception V3
(same conditions)

MESSIDOR,
IDRID and
Kaggle.

98.5% 99.0% 98.3%

Inception V4
(same conditions)

MESSIDOR,
IDRID and
Kaggle.

98.6% 99.0% 99.8%

ResNet50
(same conditions)

MESSIDOR,
IDRID and
Kaggle.

98.7% 98.1% 98.0%

DRNet-Q
(same conditions)

MESSIDOR,
IDRID and
Kaggle.

98.7% 98.2% 98.1%

ever, the DRNet-Q used fewer computational resources and
improved the training and the inference time, by a factor of
at least 1.78 in comparison to the other ConvNets using the
same data, software and hardware. We hope that this model
could help to reduce inconvenient for a patient to return to
a medical center to repeat the fundus photography exam.
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