CVPR
#*****

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2022 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Improving Pavement and Concrete Crack Detection Through Synthetic Data
Generation

Anonymous CVPR submission

Paper D ####%

Abstract

Road safety surveillance is crucial to avoid traffic jams
and accidents. In crack detection, pixel-accurate predic-
tions are necessary to measure the width — an important in-
dicator of the severity of a crack. However, manual annota-
tion of images to train supervised models is a hard and time-
consuming task. Because of this, manual annotations tend
to be inaccurate, particularly at pixel-accurate level. The
learning bias introduced by this inaccuracy hinders pixel-
accurate crack detection. We propose a novel tool aimed
for synthetic image generation with accurate crack labels —
Syncrack. This parametrizable tool also provides a method
to introduce controlled noise to annotations, emulating hu-
man inaccuracy. By using this, first we do a robustness
study of the impact of training with inaccurate labels. This
study quantifies the detrimental effect of inaccurate annota-
tions in the final prediction scores. Afterwards, we show the
advantages of using Syncrack generated images with accu-
rate annotations for crack detection on real road images.

1. Introduction

For structural monitoring, crack inspection plays an im-
portant role. For many constructions, such as roads [2]
or concrete structures [12], the cracks’ width is one of
the indicators of the damage severity and future durabil-
ity. Measuring the width requires a pixel-accurate crack
detection, which is still a challenging task [1]. The most
successful methods for crack detection are based on super-
vised learning, which rely on manual annotations for train-
ing [4, 10, 11]. However, image annotation is a tedious and
highly time-consuming task. Furthermore, these manual an-
notations tend to be inaccurate. More precisely, it is usual
that manual annotations are wider than the actual cracks.

Inaccurate annotations are a particular case of noisy la-
bels, and learning in presence of noise is a highly studied
topic [3]. However, the problem of inaccurate annotations

for crack detection is barely discussed in the literature (be-
yond the use of tolerance margins).

To fill this gap in the field, the contributions of our work
can be summarized as:

The Syncrack generator. We developed this open-
source tool to generate parametrizable synthetic images of
cracked pavement/concrete-like textures. It provides ac-
curate annotations to alleviate the crack labeling task and
parametrizable noisy annotations to study the robustness of
crack detection methods.

A robustness study of the impact of inaccurate la-
bels. We studied the detrimental impact of training under
different label noise conditions, with accurate annotations
for evaluation. We measure the impact on prediction using
supervised and unsupervised scores.

An improved crack width detection. By training solely
with Syncrack-generated images, we produced predictions
competitive with those obtained by training with real-life
images. These predictions exhibit an improved crack width
with respect to the ones obtained using real images.

2. The Syncrack generator

Syncrack allows user customization to generate datasets
with different properties. In this work, we present 3 ex-
amples of datasets generated with Syncrack (see Fig. 1).
Our tool consists of 4 main modules: 1) Creating a back-
ground image, 2) Creating crack shapes, 3) Adding cracks
to the background, 4) Creating noisy annotations from
pixel-accurate crack masks (Fig. 2). In this work, we cre-
ated Syncrack datasets with 3 difficulty levels (200 images
each) varying 2 user hyperparameters: the background aver-
age smoothness (bas) and the crack average contrast (cac)
(see Table 1). These values represent means for Gaussian
distributions, using Syncrack’s default values for standard
deviation: 0.1 for smoothness and 0.03 for contrast.

To study the effect of different label noise levels in an-
notations used for training, we created noisy labels for the 3
mentioned datasets. We introduce 5 label noise levels vary-
ing the np user parameter. This noise is analyzed in Table 2;
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Medium difficult;

Crack mask Hard difficult

Figure 1. Example of Syncrack-generated images. The leftmost
image is a synthetically generated crack shape. The rest of the
images are synthetically generated backgrounds with the same in-
serted crack.

Figure 2. Examples of label noise levels O to 4 (see Table 2). The
second row shows: Green) Crack pixels; Blue) Crack pixels misla-
beled as background; Red) Background pixels mislabeled as crack.

Table 1. Hyperparameters used to create the 3 difficulty versions.

Difficulty level Easy|Medium|Hard
Background average smoothness (bas)| 6.0 3.0 1.5
Crack average contrast (cac) 0.5 0.7 0.7

Table 2. Label noise levels used for experiments.

Label noise level 0 1 2 3 4
np 0.00 | 0.25 | 0.50 | 0.75 1.00
DSC (%) 100.0 | 88.93 | 78.41 | 68.39 | 58.94
Pr (%) 100.0 | 88.44 | 77.18 | 68.53 | 58.29
Re (%) 100.0 | 89.92 | 80.61 | 69.41 | 60.66
Herack 3.984 | 4.064 | 4.117 | 4.138 | 4.159
Hgmck 7.391 | 7.498 | 7.589 | 7.613 | 7.675
K-S 0.684610.6299 | 0.5768 | 0.5373|0.4911

we show the average precision, recall and DSC (equivalent
to F-score) per image with respect to the clean annotations.
We also propose 3 additional unsupervised scores to eval-
uate the quality of the noisy annotations; these scores are
proposed for further evaluation on real images, in which the
supervised scores are biased because of the inaccuracy of
the manual annotations.

The first of these unsupervised scores is the crack re-
gion entropy He,qcr, based on the region entropy [6]. With
a good segmentation, the intensity distribution within the
crack-predicted region is skewed towards dark pixels; this
will minimize H.,,.;. We also use a second-order crack
region entropy Hzmck. The second-order entropy relies on
co-occurrence matrices [5] rather than pixel intensities. A
good segmentation will produce a reduced amount of tex-
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Figure 3. Prediction scores obtained in the validation splits of the
Syncrack’s 3 difficulty levels evaluating with accurate annotations.

tures within the crack-predicted region, reducing H2, ;.

From a probabilistic point of view, we assume that back-
ground and cracks are two different distributions. The
Kolmogorov-Smirnov score (K-S) [9] increases with re-
spect to how much two distributions differ. Therefore, a
good segmentation should maximize this score.

3. EFFECT OF DIFFERENT NOISE CONDI-
TIONS

To validate the unsupervised segmentation scores pro-
posed in this paper, we analyze their behavior under con-
trolled conditions. To do this, we use the noisy annotations
obtained with the Syncrack generator. We use these inac-
curate annotations to train U-VGG19 [7], a state-of-the-art
network for road crack detection, and we analyze the re-
lation between the unsupervised scores and the prediction
quality of trained models. These results are plotted in Fig.
3. We see a direct relation between the supervised precision
and the unsupervised scores: when the precision decreases,
the K-S decrease and the entropies increase. In fact, the re-
lation between precision and the unsupervised scores can be
approximated by a liner function.

When increasing the noise, we see a tendency of the re-
call to actually improve. On the other hand, the precision
decreases. We see an overall decrease of the DSC because
the decrease in precision is greater than the increase in re-
call. Therefore, the noisy annotations promote the existence
of false positives. These false positives are mainly caused
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Figure 4. Examples of crack segmentation borders. The red line is the border of the manual annotation, the yellow line is the border of the
prediction obtained by training on CFD, and the green line is the border of the prediction obtained by training on Syncrack hard.

by excessively wide predictions.

4. Improving real-life crack detection with
Syncrack

To validate the performance of models trained with Syn-
crack on real-life data, we use the CrackForest Dataset
(CFD) [&]. The image size is 480320 and the cracks have
a width around 3 pixels, similarly to the default Syncrack
generator. As suggested by [10], we removed some images
with clear severe annotation errors; we kept 108 images.

Fig. 5 shows the prediction scores of the models trained
on CFD and on the 3 difficulty versions of Syncrack. We
trained on the training split of each respective dataset and
validated on the CFD validation split. The models trained
on Syncrack were trained using accurate annotations.

The models trained with Syncrack datasets exhibit a
higher precision than the model trained on real images.
However, overall, the recall and DSC of the models trained
with synthetic data are lower than the one of the model
trained with CFD. As the Syncrack difficulty increases, the
precision decreases a bit but the recall increases. The model
trained with the hard Syncrack has the better trade-off be-
tween precision and recall, obtaining a DSC of 58.26% in
contrast with the 69.32% obtained by training with CFD.

This DSC difference is caused only by a decreased recall.
Considering that manual annotations tend to be wider than
the actual cracks, a more precise segmentation will lead in-
deed to a lower recall. In Fig. 5b, we observe that the mod-
els trained with Syncrack have better unsupervised scores
than the one trained on CFD. As we increase the Syncrack
difficulty level, the entropies in the predicted crack regions
increase and the K-S decreases. Even for the hard difficulty,
these scores are better than for CFD.

With this, we observe that the decrease in recall is caused
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Figure 5. Scores obtained in the CFD validation set by using mod-
els trained on different datasets.

mainly by missing some pixels in the excessively wide an-
notations. A qualitative analysis of the predictions con-
firmed this. The models trained with the medium and hard
difficulty do a good job by not missing cracks, and the pre-
dicted width looks more close to the actual crack that both
the annotation and the prediction of CFD (see Fig. 4).

5. Conclusion

Syncrack generated images showed their promising po-
tential for supervised crack detection without requiring la-
beled real-life images. The models trained solely with our
synthetically generated data are transferable to real images;
furthermore, they are more precise in terms of crack width.
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