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Abstract

Identifying the type of kidney stones can allow urologists
to determine their formation cause, improving the early pre-
scription of appropriate treatments to diminish future re-
lapses. However, currently, the associated ex-vivo diag-
nosis (known as morpho-constitutional analysis, MCA) is
time-consuming, expensive and requires a great deal of ex-
perience, as it requires a visual analysis component that
is highly operator dependant. Recently, machine learn-
ing methods have been developed for in-vivo endoscopic
stone recognition. Shallow methods have demonstrated to
be reliable and interpretable but exhibit low accuracy, while
deep learning-based methods yield high accuracy but are
not explainable. However, high stake decisions require un-
derstandable computer-aided diagnosis (CAD) to suggest
a course of action based on reasonable evidence, rather
than to merely prescribe one. Herein, we investigate means
for learning part-prototypes (PPs) that enable interpretable
models. Our proposal suggests a classification for a kidney
stone patch image and provides explanations in a similar
way as those used on the MCA method.

1. Introduction
Urolithiasis disease refers to the formation of kidney

stones (KS). Several industrialized countries present a high
incidence of kidney stone episodes (around 10% of the pop-
ulation is affected [21, 14]). The stone formation is a multi-
factorial process [4, 6], where the diet is one of the most
important factors [10, 19] but several complementary fac-
tors can produce it (e.g., hereditary-family history, chronic
diseases, and sedentary lifestyle). Early identification of the
type of kidney stone aids the urologist to have an accurate
diagnosis, enabling them to prescribe the appropriate treat-
ment (e.g., diet adaptation or surgery), but most importantly,

to reduce eventual relapses [10].

The kidney stone type of an ex-vivo sample (extracted
during endoscopic surgery) can be identified using a two-
step procedure, a method known as Morpho-Constitutional
Analysis (MCA) [5, 6]. First, a microscopic morpholog-
ical examination of the visual characteristics of the stone
(e.g., size, form, color, texture, and appearance of the
surface and section view) is strongly correlated with the
molecular study [4] and it enables to preserve important
diagnostic information. On the other hand, an Infrared-
spectrophotometry analysis leads to a more precise iden-
tification of the crystalline composition of the stone [8].
Although the MCA efficiently establishes the type of ex-
vivo kidney stones, it is very difficult to provide a reliable
diagnosis during an endoscopic intervention (the results of
the MCA may take days). Also, it is time-consuming and
tedious (fragments extraction can take up to one hour of
surgery) [4] and very difficult to train specialists on. Re-
cently, it has been suggested that an endoscopic (intra-
operative) stone recognition (ESR) CAD tool could help to
obtain a faster diagnosis based solely on the video signal
information provided by the endoscope, in tandem with the
visual aid on the screen [9]. Also, the operations are quicker
to perform and less traumatic, due to dusting can fragment
and destroy the kidney stones inside the urinary tract.

Several methods have been proposed in recent years
for performing automated ESR, based both on traditional
and deep learning techniques with very encouraging re-
sults [16]. On the one hand, shallow Machine Learning
(ML) models have shown that the efficient extraction of fea-
tures (e.g., color and texture) in kidney stone views (surface
and section) can have a significant impact on the classifica-
tion (with accuracy ≥ 90%) on in-vivo endoscopic images
(strongly correlated to the morphological analysis of kid-
ney stones) [12, 11, 16]. However, in visualizations such as
UMAP [13], the clusters are not tight enough, which could
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Figure 1: (a) Overall view of the proposal workflow, using ProtoPNet to obtain particular explanations for an input image. By use of PPs
we provide explanations of the output classification, in tree different ways on (b), with a heatmap of the relevant parts on the input image,
training images detected similar to the input, and measures of visual characteristics (descriptors) important for the activated PPs.

mean that they are not the best features that could be used
in the classifier. On the other hand, Deep Learning (DL)
based models [11, 9, 2, 16] have shown excellent results
(high accuracy ≥ 95%) for extracting features relevant to
the classifier (and tight clusters in UMAP). However, DL
models lack interpretation of the features they extract, mak-
ing these models not very useful in clinical settings.

As a matter of fact, current ML and DL models are un-
able to describe the inner workings that led to a given pre-
diction beyond the class label. Therefore, these types of
models cannot provide useful information to the specialist
to understand how the input image was used to perform a
diagnosis (i.e., classify the kidney stone type).

In order to pave the way for AI-based ESR using deep
learning techniques, in this work, we leverage recent strides
in explainability that seek to base image classifiers deci-
sions on case-based reasoning to make them more inter-
pretable [3, 15, 17, 1]. Additionally, we provide both visual
explanations and quantitative information about visual char-
acteristics deemed important by the network. It must be em-
phasized that our approach follows the reasoning processes
of urologists in detecting morphological relevant features of
each image (i.e., MCA). Overall, this work is aimed at facil-
itating human-machine collaboration in the context of CAD
tools for urolithiasis prevention.

2. Materials and Methods

2.1. Kidney stone dataset

The ex-vivo dataset includes 305 kidney stone images
acquired (two reusable digital flexible ureteroscopes from
Karl Storz using video columns: Storz Image 1 Hub and
Storz image1 S) and labeled manually by the urologist
Jonathan El Beze2 (for more details, see [7]). For this
study, we make use of an ex-vivo image dataset divided in
three subsets: 177 surface images, 128 section images and
the third subset of 305 images (177 surface and 128 sec-
tion images) of the six kidney stone types with the highest
incidence: Acide Urique (AU), Brushite (BRU), and Cys-

tine (CYS), Struvite (STR), Weddellite (WD), Whewellite
(WW). Patches of this dataset are shown in Fig. 2.

Figure 2: Examples of ex-vivo kidney stones generated patches.

However, the identification of kidney stones is not usu-
ally performed on whole images [18, 20, 2, 12]. Thus,
patches of 200×200 pixels (minimal size enable to cap-
ture enough texture and color information) were cropped
from the original images to increase the size of the training
dataset (for more details, see [11]). A total of 2000 patches
are available per class (AU, BRU, CYS, STR, WD, and
WW) and view (surface, section, and mixed). The train and
test relationship were 80% (38400 images) and 20% (9600
images), respectively. In order to limit the over-fitting pro-
duced by the small size of the available training dataset, data
augmentation was performed. Additional patches were ob-
tained by applying geometrical transformations (patch flip-
ping, and perspective distortions), increasing the number of
training patches from 38400 to 1152000 using data augmen-
tation. The patches were also “whitened” using the mean
mi and standard deviation σi of the color values Ii in each
channel (Iwi = (Ii −miσi), with i = R,G,B).

2.2. ProtoPNet plus descriptors

By use of a Prototypical Part Network (ProtoPNet), able
to identify several parts of an image, where it thinks a
part of the image looks like a learned prototypical part of
some class (as it can be seen in Fig. 1a and 1b). This
type of model makes its prediction on a weighted combi-
nation of the similarity scores between parts of the image
and the learned part-prototypes (PPs). This capacity yields
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Table 1: Weighted average metrics comparison for section, surface, and mixed patches. ProtoPNet with VGG19 with batch normalization
as the backbone (PPN-VGG19bn). VGG 19-layer model, configuration ‘E’, with batch normalization (VGG19bn).

Model Accuracy Precision Recall F1 score

Surface Section Mixed Surface Section Mixed Surface Section Mixed Surface Section Mixed

PPN-VGG19bn 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.99 0.97
VGG19bn 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
AlexNet 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97

predictions that are relatively easy to understand by users,
rendering it interpretable. We apply the methodology pre-
sented in previous works, that proposed and used ProtoPnet
models [3, 17]. However, PPs may still depend on non-
apparent characteristics from the input image, reason for us
to quantify the sensitivity of PPs to a set of perturbations
[15], which we call “descriptors”. These descriptors indi-
cate why the classification model deemed an image patch
and PP (part-prototype) similar. It’s worth noticing that PPs
are vectors in latent space that should learn discriminative,
prototypical parts of a class. Thus, high dimensional re-
duction projections, UMAP visualizations as an example,
contain global information of the main characteristics of the
whole ProtoPNet model.

2.3. Implementation details

The ProtoPNet architecture consists of a standard Con-
volutional Neural Network (CNN, e.g. ResNet), followed
by a prototype layer and a fully-connected layer. The pro-
totype layer consists of a pre-determined number of class-
specific prototypes. Herein, we use 10 part-prototypes per
class, the initialization and training procedure for our train-
ing also follows [3, 15], using a pre-trained VGG19 (with
batch normalization) on ImageNet as CNN backbone.

Figure 3: UMAP of the Part-Prototypes activations on section
images. Our approach allows obtaining separate clusters of the
output classes. On the zoomed example (blue circle) can be ap-
preciated the projection of a new classification (yellow point) is
surrounded by samples of the same class (purple points), indicat-
ing a high certainty on the correct classification of the test sample.

3. Results and Discussion
Evaluation metrics of our model, its backbone model,

and AlexNet (as reference), are reported in Table 1. The
performance of ProtoPNet is comparable with its corre-
sponding uninterpretable backbone model (≤ 3% differ-
ence). In contrast to black-box classifiers, our proposal pro-
vides explanations for input images, by showing the activa-
tion area of PPs, the corresponding representative image to
each activated PPs, and their descriptors (Fig. 1b).

We plot PPs and their descriptors activations for input
images on a UMAP visualization of the three most discrim-
inant dimensions (umap1 to umap3). This UMAP allows
seeing class separability for each output class of the Pro-
toPNet, as shown in Fig. 3. In this way, additional global
insight is gained in the case of a new classification observed
surrounded by samples of the same class, which provides
confidence of a correct classification (also described in Fig.
3). However, it was observed that multiple PPs end up in-
dicating the same training patch as their explanation, a be-
havior similar to mode collapse on Generative Adversarial
Networks (GANs), which limits the variety of possible ex-
planations provided for an output. The use of descriptors
mitigates the cases for visually similar PPs by providing de-
tails on the characteristics most relevant for each PP [15].

4. Conclusion and Future work
We showed that by training of PPs and extracting their

descriptors we convert an uninterpretable VGG19 into an
interpretable model. This can facilitate the use of these
models for ESR by a urologist. However, mode collapse
of the learned PPs is a limitation on the current implemen-
tations of ProtoPNets. To prevent this, better initialization
procedures and loss function adjustments will be explored.
Finally, we found indications of better class separability by
use of PPs and their descriptors, to the point UMAP visu-
alizations could be used to provide global context of the
certainty of the output classification of a particular image.
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