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Abstract

Recently, few-shot video classification has received an
increasing interest. Current approaches mostly focus on
effectively exploiting the temporal dimension in videos to
improve learning under low data regimes. However, most
works have largely ignored that videos are often accom-
panied by rich textual descriptions that can also be an es-
sential source of information to handle few-shot recogni-
tion cases. In this paper, we propose to leverage these
human-provided textual descriptions as privileged informa-
tion when training a few-shot video classification model.
Specifically, we formulate a text-based task conditioner to
adapt video features to the few-shot learning task. Further-
more, our model follows a transductive setting to improve
the task-adaptation ability of the model by using the sup-
port textual descriptions and query instances to update a
set of class prototypes. Our model achieves state-of-the-
art performance on four challenging few-shot video action
classification benchmarks. The code can be found at: here.

1. Introduction
Humans use language to guide their learning pro-

cess [17]. For instance, when teaching how to prepare a
cooking recipe, visual samples are often accompanied by
detailed or rich language-based instructions (e.g., “Place
aubergine onto pan”), which are fine-grained and correlated
with the visual content. These instructions are a primary
cause of the human ability to quickly learn from few exam-
ples because they help to transfer learning among tasks, dis-
ambiguate and correct error sources [17]. However, modern
deep learning approaches in action recognition [9, 14, 30]
have mainly focused on a large amount of labeled visual
data ignoring the textual descriptions that are usually in-
cluded along with the videos [7, 10]. These limitations
have motivated an increasing interest in Few-Shot Learn-
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Figure 1. Outline of our FSL setting. Our model leverages the
rich text descriptions of the support instances (left) to improve
class discrimination (right) in two different ways. 1) Modulating
the visual feature encoder to alleviate the large intra-class varia-
tions of video data. 2) A transductive setting where textual infor-
mation of the support instances is used alongside visual informa-
tion of the query set to augment the support set.

ing (FSL) [31], which consists of learning novel concepts
from few labeled instances.

The few existing video FSL methods follow one of two
approaches: (i) exploiting the temporal and spatial dimen-
sions in videos [2, 34]; or (ii) taking advantage of large
amounts of additional video data by using tag retrieval to
overcome the labeled data scarcity [32]. However, recent
work has not explicitly leveraged the available natural lan-
guage descriptions that come with videos as an additional
information source. These descriptions can be easily ob-
tained without further effort while the dataset is collected,
as described by [4]. During the Epic-Kitchens [4] collec-
tion, the actors simply narrated their actions using free-form
language. We found that these text descriptions are crucial
to recognizing actions in a few-shot regime, which agrees
with the human ability to compound and exploit multimodal
knowledge to learn from few training samples quickly.

In this paper, we present these main contributions: (I)
To the best of our knowledge, we propose a new class of
models: Text-conditioned Networks with Transductive in-
ference or TNT that leverages the semantic information in
textual action descriptions of the support data as a privileged

https://ojedaf.github.io/tnt_site/


source of information [27] to improve class discrimination
in few-shot video classification, see Fig. 1. (II) We show
the advantage of using the semantic information in support
textual action descriptions to perform transductive learning.
We develop a dynamic prototype module that uses textual
semantic representations to obtain class prototypes using
both labeled and unlabeled samples following an attentive
approach. (III) We demonstrate that textual embeddings
outperform the video ones for task adaptation even when
these descriptions are short and class-specific (e.g., class la-
bels: Headbanging, Stretching leg, etc). (IV) We achieve
state-of-the-art performance with two families of video ac-
tion FSL benchmarks, those with detailed or rich textual de-
scriptions such as Something-Something-100 (SS-100) [2]
and the new benchmark Epic-Kitchens-92 (EK-92), and
those with short class-level textual descriptions such as
MetaUCF-101 [18] and Kinetics-100 [35].

2. Related Work
Few-Shot Learning. It is possible to identify three main
groups of methods. (i) Gradient based methods: they fo-
cus on learning a good parameter initialization that facili-
tates model adaptation by few-shot fine-tuning [5, 19, 21].
(ii) Metric learning based methods: they aim to learn better
metrics for determining similarity of input samples in the
semantic embedding space [12,20,24,26,29]. (iii) More re-
cently methods [1,23] extend the conditional neural process
framework [6] with the goal of effective task-adaptation.
Induction vs Transduction in FSL. There are two types
of inference approaches: inductive and transductive. In the
inductive setting, only the support or labeled instances are
used to guide the inference process [1,12,20,23,24,26,29].
In contrast, in the transductive setting, the model uses extra
information from query or unlabeled samples to perform its
inference [11, 15, 16, 19].
Few-Shot Video Classification. The shift of action recog-
nition research from coarse [10] to fine-grained cate-
gories [4, 8] has intensified the problem of data scarcity. A
few works to tackle this issue have appeared recently. How-
ever, most of the works focused only on better exploiting vi-
sual or temporal information from videos [2,13,18,32–36].
We aim to bridge the gap between the few-shot samples and
the nuanced and complex concepts needed for video rep-
resentation learning by using textual descriptions as privi-
leged information to contextualize the video feature encoder
and the classification approach.

3. Method
3.1. Problem Definition

FSL aims to obtain a model that can generalize well to
novel classes with few support instances. Therefore, we
follow the standard FSL setting [24, 29], wherein a trained

model fθ is evaluated on a significant number of N−way
K−shot tasks sampled from a meta-test set Dtest. These
tasks consist of N novel categories, from which K sam-
ples are sampled to form support set S, where K is a small
integer, typically, 1 or 5. S is used as a proxy to classify
the B unlabeled instances from the query set Q. The pa-
rameters θ of the model f are trained on a meta-training set
Dtrain, by applying the episodic training strategy proposed
by [29]. This is, N−way K−shot classification tasks are
simulated by sampling from Dtrain during meta-training.
Q is sampled from the same N categories in such a way
that the samples in Q are non-overlapping with S. The set
of classes available for meta-training are often referred to as
base classes. Note that the model f is evaluated on different
categories than it is trained on. In this paper, we assume that
a text description is available for each instance in S.

3.2. TNT Model

We strive for action classification in videos within a low-
data setting by means of (i) the rich semantic information of
textual action descriptions and (ii) exploiting the unlabeled
samples at test time. We accomplish this task with our Text-
Conditioned Networks with Transductive Inference (TNT),
depicted in Fig. 2. Our overall model f is a text-conditioned
neural network designed to be flexible and adaptive to novel
action labels. Taking inspiration from [1, 23], TNT is com-
posed by three modules: (i) Task-Conditioned Video En-
coder g; (ii) Task Conditioner Ψ; and (iii) Task-Conditioned
Transductive Classifier h.
Task-Conditioned Video Encoder (g). g transforms each
video v into a meaningful representation v focusing the la-
tent information essential for the novel classes. To this end,
it uses the TSN [30] with a ResNet backbone that is en-
hanced by adding Feature-wise Linear Modulation (FiLM)
layers after the BatchNorm layer of each ResNet block.
FiLM layers adapt the internal representation vi at the ith

block of g via an affine transformation FiLM(vi; γi, βi) =
γivi + βi where γi and βi are the modulation parameters
generated by the Task Conditioner module.
Task Conditioner. The Task Conditioner Ψ is an essen-
tial part of our approach that provides high adaptability to
our model. Specifically, it leverages the RoBERTa language
model [22] to compute conditioning signals that modu-
late the Task-Conditioned Video Encoder g and the Task-
Conditioned Transductive Classifier h based on the textual
action descriptions of a set of support instances S. Due to
the inherent semantically rich and structured nature of tex-
tual action descriptions, we argue that explicitly exploiting
text embeddings associated with action labels is crucial to
adapt our model on each episode.
Task-Conditioned Transductive Classifier. This module
h follows a metric learning approach to classify the unla-
beled samples of Q by matching them to the nearest class



Model
with Rich Textual Descriptions with Short Class-Level Description

EK-92 SS-100 MetaUCF-101 Kinetics-100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ARN [34] - - - - 62.1 84.8 63.7 82.4
TSN++ [2] 39.1∗ 52.3∗ 33.6 43.0 76.4∗ 88.5∗ 64.5 77.9

CMN++ [2, 35] - - 34.4 43.8 - - 65.4 78.8
TRN++ [2] - - 38.6 48.9 - - 68.4 82.0
TAM [2] - - 42.8 52.3 - - 73.0 85.8

TSN++ Transd. [15] 42.33 52.66 39.28 52.63 79.23 90.08 68.0 79.87
TNT 46.13 ± 0.27 59.00 ± 0.23 50.44 ± 0.25 59.04 ± 0.23 86.66 ± 0.19 94.14 ± 0.11 78.02 ± 0.24 84.82± 0.19

Table 1. Results on two families of datasets. Those with rich textual descriptions: EK-92 and SS-100. Those with class-level textual
descriptions: MetaUCF-101 and Kinetics-100. We report top-1 accuracy on the meta-testing sets for the 5-way tasks. *Obtained by us.
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Figure 2. TNT model is composed by three parts. (I) Task-Conditioned Video Encoder g generates representations vQ, vS of video
sequences conditioned on parameters β and γ. (II) Task Conditioner Ψ takes video descriptions x to compute the text embeddings eT for
generating modulation parameters β and γ, and the semantic class embedding ET

class. (III) Task-Conditioned Transductive Classifier h
takes the video representations vQ, vS and the embedding ET

class to classify unlabeled samples following a transductive approach.

prototype. To obtain the class prototypes, we use a trans-
ductive approach that leverages the unlabeled samples from
Q to augment the support set and subsequently improve
the class prototypes based on the semantic class embed-
ding ET

class. Specifically, the Task-Conditioned Transduc-
tive Classifier consists of two components. (i) Dynamic
Prototype Module. This module employs a cross-attention
layer [28] to compute class-dependent relevance weights for
each of the B samples in Q to augment S. (ii) Distance
Module. This module classifies the unlabeled instances of
the query set by matching them to the nearest class proto-
type. To compute the distance between each instance and
prototypes, we use a class-covariance-based distance (Ma-
halanobis) as in [1].

4. Experiments

Datasets. We evaluate our approach using two families of
datasets: (i) those with rich and detailed textual descrip-
tions of actions per video: Epic-Kitchens [4], Something-
Something-V2 [8], and (ii) those with short class-level de-
scriptions: UCF-101 [25] and Kinetics [10]. We propose
for the first time to use Epic-Kitchens [4] as a benchmark
for few-shot video classification.
Baselines. We compare the performance of our TNT model
against state-of-the-art methods for few-shot video classifi-
cation, namely TAM [2] and ARN [34]. We also consider
additional stronger baselines, namely TSN++, TRN++ and
CMN++ which are proposed by [2], following the practices

from [3, 35]. Because our model makes use of a transduc-
tive setting, we also consider a transductive baseline named
TSN++ Transd. This baseline is an extension of the image-
based method [15].
Results. As it can be observed in Table 1, we achieve state-
of-the-art-results in all standard benchmark metrics across
the two tested families of datasets. Notably, our model
achieves outstanding results when both spontaneous, un-
structured and fine-grained descriptions and short and gen-
eral descriptions are available, although it is designed to
leverage the rich semantic information in fine-grained tex-
tual descriptions.
5. Conclusions

In this paper, we propose the Text-Conditioned Network
with Transductive Inference (TNT), a novel few-shot model
that leverages the fine-grained textual descriptions of the
support instances to improve video understanding under a
low-data regime. Unlike previous works, TNT uses text
representations from a pre-trained language model to adapt
and contextualize the feature encoder to each FSL task and
improve class prototypes in a transductive setting. Our ex-
periments show that our model outperforms a wide range
of state-of-the-art models in four challenging datasets. Fur-
thermore, our ablation study shows that the dynamic proto-
type module plays an important role in improving the 1-shot
task. As an important finding, we verify that textual con-
ditioning provides a more helpful signal than video-based
conditioning to enhance the video feature encoder.
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