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Abstract

Identification of the type of kidney stones (i.e. morpho-
constitutional analysis) is of paramount importance to pre-
scribe an appropriate treatment and to prevent future re-
lapses. However, this procedure is time-consuming, expen-
sive, and requires a great deal of experience. Previous
work has shown that the identification of kidney stones is
a problem that can be solved with machine and deep learn-
ing strategies. However, most of these methods make use
of single images (both spatial and temporal terms) and they
do not follow the morphological approach to kidney stones
identification: namely, they either take surface or section
information separately and there is no clear approach for
combining such information. Herein, we investigate means
for producing a single description of kidney stone samples,
in a manner that is more amenable or similar to the proce-
dure the urologists and/or biologists follow when they per-
form this classification. We do so by exploring fusion meth-
ods based on multi-view learning, where we train a neural
network for only surface images of the stone, and a second
neural network is trained for section images of the stone.
Several fusion techniques are tested to fully assess which
combination outperforms the single-view models from the
state of the art. Compared to the state of the art, the ob-
tained results show an improvement of 10% in weighted
precision and recall, and an increase in the robustness of
classification of all stone types.

1. Introduction

Urolithiasis refers to the formation of kidney stones that
cannot be expelled from the urinary tract. This is a medical
condition that has been increasing over the last few years
[17, 11]. Urolithiasis is caused by multiple factors, where
diet is the most important, but also genetic inheritance, wa-
ter intake, and a sedentary lifestyle could promote the for-

mation of kidney stones [6]. Morpho-constitutional analysis
(MCA) is the most important method for kidney stone iden-
tification. MCA is a combination of a visual examination
under the microscope of the stone’s texture, appearance, and
color (surface and section views), and a biochemical analy-
sis by Fourier Transform Infrared Spectroscopy (FTIR) [3].
If carried out properly, a timely treatment (diet adaptation,
surgery) can be prescribed for each patient, reducing the
risk of stone recurrence [3]. However, MCA has a major
drawback: the results of this analysis are often available
within a time frame of one or two months. For this reason,
more urologists seek to visually identify the morphology
of kidney stones only with the help of the image displayed
on the screen [12] during the removal process (Endoscopic
Stone recognition (ESR)). However, this visual analysis re-
quires a great deal of experience due to the high similarities
between stones that only a limited number of specialists can
reliably identify [1].

Different Machine Learning (ML) approaches have been
proposed [10, 5, 12, 14] for the classification of kidney
stones, demonstrating that it is a problem that can be solved
with traditional and deep learning techniques with very en-
couraging results. However, most of these models were
trained on ex-vivo stones placed in controlled environments,
whereas in reality, images may suffer from motion blur,
reflections, illumination variations, as occurs in common
practice during an endoscopic imaging session. Moreover,
there is no ordered manner of mixing surface and section in-
formation for exploiting the visual information in a way that
a specialist would do it. Besides, in most cases the amount
of training data available is limited, thus these contributions
use data augmentation techniques to increase the amount of
input data, but some limitations have not been addressed.
Nonetheless, these works [10, 5, 12] have demonstrated the
potential of automatic ESR in an in-vivo dataset.

Multi-View (MV) classification is an area of ML that
combines features from different sources or feature subsets,
known as views, to identify objects with higher accuracy,
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since diverse characteristics are extracted, synthesized and
combined [8]. This variant of learning can improve the per-
formance by optimizing multiple functions, one per view,
and in that way, information can be obtained from different
perspectives of the same data inputs. Moreover, MV can
also be applied to Convolutional Neural Networks (CNNs)
to boost the performance in situations where a single im-
age does not yield sufficiently discriminative information
for accurate classification by combining useful information
from different views, so more comprehensive representa-
tions may be learned yielding a more effective classifier
[13].

In this work, we leverage recent strides in deep learn-
ing that have sought to combine information from multi-
ple views. Previous work [7, 15] demonstrates that MV
learning can be applied in medical images, with promising
results. We believe that such an approach can be benefi-
cial/optimal for the real-time identification of kidney stones,
by maximizing the amount of information that the model
can use for classification. Through several experiments,
we demonstrate that by combining the information of sur-
face and section views in the same model, we can obtain
a method that is more explainable and similar to what spe-
cialists do in clinical practice (i.e., MCA).

2. Materials and Methods

2.1. Kidney stone dataset

The ex-vivo dataset includes 305 kidney stone images
acquired (two reusable digital flexible ureteroscopes from
Karl Storz using video columns: Storz Image 1 Hub and
Storz image1 S) and labeled manually by the urologist
Jonathan El Beze2. To reproduce in-vivo conditions, the
experimental setup used in this work consists of a small di-
ameter tube where the inner walls were covered with a yel-
lowish film to display the appearance of the urinary tract
(for more details, see [4]). The ex-vivo dataset consists
of three subsets: the first subset consist of 177 surface im-
ages, 128 section images for the second subset, and the third
subset of 305 images (177 section + 128 surface) of the
six kidney stone types with the highest incidence: Type Ia
(Whewellite, WW), Type IIb (Weddellite, WD), Type IIIb
(Acide Urique, AU), Type IVc (Struvite, STR), Type IVd
(Brushite, BRU), and Type Va (Cystine, CYS). Images of
this dataset are shown in Fig. 1.

Classification of kidney stones is not performed on
whole images [14, 16, 2, 10]. Therefore, in this work as in
previous works, patches of 256×256 pixels were cropped
from the original images to increase the size of the training
dataset (for more details, see [9]). However, the number of
resultant patches for each class is imbalanced (due to the
changing fragment sizes, image resolution, and the number
of images in the original dataset). In order to balance the

Figure 1: Examples of ex-vivo kidney stones images. From left
to right: WW, WD, AU, STR, BRU, and CYS. The surface view
is in the first row (top row), and their respective generated patches
are in the second row. The section view is in the third row, and
their respective generated patches are in the fourth row.

number of patches per class, a random sampling approach
was used. This step yielded a total of 1000 patches per
class (WW, WD, AU, STR, BRU, and CYS) and view (sur-
face, section, and mixed). This new dataset was then split
into 19200 images (80%) for training and validation, and
4800 images (20%) for the test. In order to limit the over-
fitting produced by the small size of the available training
dataset, data augmentation was heavily performed. Addi-
tional patches were obtained by applying geometrical trans-
formations (patch flipping, affine transformations, and per-
spective distortions). The number of patches increased from
19200 to 153600 using data augmentation (10% of the orig-
inal patches were kept for test purposes). The patches were
also “whitened” using the mean mi and standard deviation
σi of the color values Ii in each channel (Iwi = (Ii−miσi),
with i = R,G,B).

2.2. Methods

2.2.1 Pre-training Stage

Previous approaches have used Deep Learning architec-
tures such as AlexNet, or VGG16 for assessing the kidney
stone classification task [9, 12]. For this contribution, the
previously-mentioned architectures are used for the creation
of the MV models. This network was trained on the en-
tire training data, mixing both surface and section patches,
and served as a baseline or comparison for the multi-view
implementations introduced in this paper. Once trained,
the feature extraction layers of this single-view network
are frozen to ensure that each branch from the multi-view
model extracts the same features and that any variation in
the performance will rely on the unfrozen layers (fusion and
fully-connected layers).

2



(a) SV-AlexNet (b) MV-AlexNet-max

Figure 2: Test results in (a) Single-View (SV) AlexNet architecture with no fusion, and (b) in Multi-View AlexNet architecture with a
max-pool fusion layer.

2.2.2 Multi-View Model

The frozen layers (part A of the MV model) are duplicated.
In this way, one copy will process only images of the surface
of the stone, while the other copy will process images of the
section view. These frozen layers are connected to a fusion
layer, which will be responsible for mixing the information
of the two views. In this work, the two late-fusion methods
proposed in [8] are explored. Lastly, the output of the fu-
sion layer is connected to part B of the multi-view model,
which merely consists of the classifier. The proposed model
is shown in Fig. 3. To make a direct comparison of the
feasibility and performance of this architecture against pre-
vious works, we used the same hyper-parameters as [12].
Cross-entropy loss is used to compute the classification loss,
and optimization is performed using Adam optimizer with
a learning rate of 2e−4. Batch-size selected was 64 for both
multi-view and single-view networks. The experiments and
implementation of this network were performed using Py-
torch v1.10.2.

Figure 3: Proposed Multi-View model. Part A corresponds to
feature extraction layers, Part B corresponds to classification lay-
ers. A fusion layer is added to combine information from different
views.

3. Results and Discussion
Several experiments were performed to assess the ability

of MV models to predict the kidney stone class, combining
information from surface and section views, as done during
an ESR procedure [5]. Precision (P) and Recall (R) metrics

Table 1: Weighted average metrics comparison for section, sur-
face, and mixed patches. MV-AlexNet-max: Multi-View network
with max-pool as fusion strategy. MV-VGG16-max: Multi-View
network with max-pool as fusion strategy. MV-AlexNet-conc:
Multi-View network with concatenation as fusion strategy. SV-
AlexNet: Single-View AlexNet network. SV-VGG16: Single-
View VGG16 network.

Surface Section Mixed

Classifier P R P R P R

MV-AlexNet-max – – – – 0.95 0.94
MV-VGG16-max – – – – 0.94 0.94
MV-AlexNet-conv – – – – 0.94 0.93

SV-AlexNet 0.77 0.71 0.88 0.87 0.84 0.83
SV-VGG16 0.79 0.70 0.89 0.89 0.83 0.81

are determined for each class individually. The results re-
ported for both fusion techniques in the multi-view models
show that combining information from different classifiers
yields significant results compared to the single-view clas-
sifiers. For instance, for a single-view AlexNet network, the
results obtained were 0.84 and 0.83 for precision, and recall,
respectively. In contrast, MV networks, independent of the
fusion strategy, performed better compared to the other ex-
periments. Table 1 shows the scores for all the models used
for this work, and Fig. 2a, and Fig. 2b show how stone
type clusters are distributed for both SV and MV networks.
One disadvantage of using concatenation as fusion strategy
is that the number of features of the first layers of the clas-
sifier increases considerably, limiting its implementation on
systems with reduced memory.

4. Conclusion and future work
We showed that by mixing information from different

views, it is possible to train more accurate models for pre-
dicting kidney stone composition from images obtained
from ureteroscopy. Thus, AI technology can be included
in the current stone removal workflow, speeding up preven-
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tive diagnosis measures. However, we make use of a very-
limited ex-vivo dataset in a simulated environment. We aim
to solve this problem by applying metric learning in future
work to tackle the amount of data that we require for train-
ing, as well as to increase inter-class separability.
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