
Towards fast ego-motion estimation using a two-stream network

Jose Arturo Cocoma-Ortega
Instituto Nacional de Astrofisica, Optica y Electronica (INAOE)

Luis Enrique Erro 1, Tonantzintla, Puebla, Mexico
cocoma@inaoep.mx

Jose Martinez-Carranza
Instituto Nacional de Astrofisica, Optica y Electronica (INAOE)

Luis Enrique Erro 1, Tonantzintla, Puebla, Mexico
carranza@inaoep.mx

Abstract

Autonomous navigation is a challenging task that re-
quires solving individual problems such as the camera
pose. Even more, if agile motion is performed in the
navigation, the problem becomes complex due to the ne-
cessity to know the pose (trajectory generated) as fast
as possible to continue with the agile motion. Several
works have proposed approaches based on geometric al-
gorithms and deep learning-based solutions that reduce
error in estimation. Still, the prediction is performed
at 30Hz on average in most cases. It is desirable to in-
crease the frequency of operation to allow cameras with
higher frame rates to capture the motion correctly. Mo-
tivated by the latter, we propose a two-stream network
that allows predicting pose at a frame rate up to 78fps
with an average relative error of 2.21m.

1. Introduction
The estimation of motion performed by an object

(such as a robot, vehicle, or person) using only visual
information (obtained from a camera or cameras) is
challenging in robotics, augmented reality, and wear-
able computing.

In recent years, many approaches have been pro-
posed using deep learning to offer robust solutions with
the least possible error [1, 21, 22]. Despite the efforts
to offer robust solutions, they have become complex
having an operating frequency of around 30Hz in most
cases. Nevertheless, it is desirable to use cameras with
a higher frame rate for agile motion to capture all the
movement performed without losing its detail.

We propose a methodology based on a two-stream
CNN architecture for the latter. Our main idea is to

feed the two-stream network with two stacks of 6 con-
secutive images, one with grey-scale images and an-
other with edge images using the well known Canny
edge detector.

The paper has been organised as follows; Section
2 reviews the most related works. Section 3 briefly
describes our proposed methodology. The experiments
are shown in section 4. Finally, section 5 presents the
final remarks of our proposal.

2. Related work
Since it was introduced in the early 2000s, visual

SLAM (Simultaneous Localisation and Mapping) has
been one of the mos used and improved algorithms
for pose estimation. Traditional computer vision algo-
rithms propose the use of different feature extractors
such as ORB descriptors [16] in which a 3D dense map
is generated with the features extracted. Also, the opti-
cal flow has been combined with extractors to improve
estimation [2, 12,13].

With the growth of Deep Learning, proposals based
on CNN architectures have been increased. DeepVO
[20] uses a stack of two consecutive RGB images to
pose estimation, achieving an average translation error
(terr) of 5.96%.

Exploring different techniques, Zhou et al. [25] de-
sign a cascade architecture of multiple sub-networks,
achieving a low relative error of 1.4% (terr), but with a
computational cost high; they need 129.56ms (7.7FPS)
to estimate each pose. Some works estimate optical
flow to aid the correction of camera pose [24]. Despite
can achieve a competitive error of 3.41% (terr), they
can perform it only at 12.5Hz.

Lu et al. [11] use CannyLines to enhance RGB-D
frames and make predictions up to 35Hz.

3. Methodology
As shown in the work of Cocoma et al. [6], using only

monocular grey-scale images allow 3D pose estimation
for a specific context. Motivated by this idea, we create
a stack of 6 consecutive grey-scale images to input a
CNN for extracting features and estimating 3D camera
pose.

The most predominant element in images is the
floor, which may not contribute significantly as other
parts in the scene do. To avoid the extraction of many
features from the floor and motivated by the work of
Klein [10] that shows that prominent elements such
as edges are preserved in agile motion and can repre-
sent better the motion, we propose to use an additional
stack of 6 consecutive edge images. Then, we propose
a two-stream network based on inception modules [18],
that takes as input a stack of grey-scale images in the
first branch and edge images in the other.

First, we extract four patches of size 56x56 pixels
from each input that feeds each branch. Then, we
combine each branch output. A final block of 3 in-
ception modules precedes a final layer formed by two
MLP (multi-layer perceptron) layers with 1024 neurons
and three neurons, respectively, to perform regression.

We built the grey-scale stack using the frames from
the dataset already in grey-scale, and we resized them
to 224x224 pixels. Using the Canny algorithm [4] pro-
vided by OpenCV [3], we obtain the edge images.

Our network learns to predict the relative motion
between the last two frames in the stack. To convert
world pose (pw) to relative motion (pc), we use the
following equation:

pc
i = RotT (qi−1)(pw

i − pw
i−1) (1)

where pc
i is the relative motion between pw

i , pw
i−1; pw

i

is the position in the world; qi−1 is the orientation in
the world and RotT is the transpose rotation matrix of
q.

To estimate the world pose, we use the world orien-
tation qw, thus:

pw
i = Rot(qw) ∗ pc

i + pw (2)

4. Results
To test our proposal, we experiment with a Drone

racing dataset. In this section, we described all the
details of the experimentation performed.

4.1. Dataset

WWe used the UZH-FPV Drone racing indoor
dataset [7]. This dataset contains sequences from in-
door and outdoor scenes recorded from the first-person-
view quadrotor flown aggressively by an expert pilot.

Figure 1. Sequences for the indoor dataset. Besides the
dataset containing nine sequences, only six have ground-
truth labels. Tracks nine and ten were selected for our
experiments.

Dataset provides ground-truth labels for some se-
quences to allow learning.

We selected the indoor dataset for our experiments
formed by nine tracks. Some tracks follow an oval
shape, others an eight, and one with a free-form trajec-
tory. Only six of the nine sequences contain ground-
truth labels (see Fig. 1). Due to the challenging na-
ture of the dataset, we selected tracks that describe
the shape of an eight (tracks 9 and 10). Track 9 was
used for training and track 10 for evaluation. Track
nine contains three laps in the sequence with 1007 im-
ages and labels. Similarly, track ten has 828 images
with their respective labels.

4.2. Implementation

We use a laptop with an i5-9300 CPU (octa-core),
32 GB of RAM, and a Geforce RTX 2060 with 6GB
VRAM for training and testing. For the implementa-
tion of our methodology, we used the Keras API 2.6.0
[5] and TensorFlow 2.6.2 framework [8] implemented
in Python 3.6.9 [19]. We use ROS [17] to communicate
the camera topics with CNN on Ubuntu 18.04 with
CUDA 11.2 [15].

4.3. Training process

To train our network, we selected the Adam opti-
miser ([9]) with a learning rate = 0.01. To perform the
regression, we use ReLU ([14]) as activation function,
and for loss function, we use the euclidean distance (see
Eq. (3)).

loss(I) = ∥x̂ − x∥2 (3)

We trained our network for 100 epochs with a batch
size = 8.

Figure 2. Top view trajectory 10. Our proposal estimates
the blue trajectory, and the red one is the ground-truth tra-
jectory. As can be seen, the estimated follows the ground-
truth trajectory, with the max errors at the turns

4.4. Experiments

The experiments were conducted as follows, first,
training our network with track 9, then the unseen
track 10 was used for evaluating the prediction. We
perform an ablation study of the effect of different
thresholds for the Canny detector. We vary the lower
threshold from 50 to 250 and the upper one from 100
to 300. Table X shows the results of the ablation study.

We can notice from Tab. 1 that the better results
are with, the lower value and the upper value, being
this last the best.

We used the evaluation trajectory provided by the
dataset’s authors [23]. Figure 2 shows the top view
of the trajectory estimated compared with the ground-
truth trajectory. As can be seen, the estimated trajec-
tory (blue) follows the shape of the trajectory showing
the max errors at the turns due to the aggressive change
in motion. Additionally, Fig. 3 shows the relative errors
for segments of the trajectory.

To calculate the time needed to perform estimation,
we measured the time expended in each step of the
methodology; this includes the Canny edge detector,
rescaling image, generating the two stacks (grey and
edge, respectively) and network prediction. We calcu-
lated the times in the ablation study, given an average
time of 12.8ms (milliseconds) to estimate each pose.

As it can be seen, besides the trel is around 2m
(metres), the estimation follows the ground-truth tra-
jectory closely, and it can be estimated up to 78Hz,
which surpasses most of the works reported in the lit-

Figure 3. Relative translation error for estimated trajectory
10.

lower th upper th trel(m) RMSE
50 100 2.26 1.75
50 150 2.55 1.97
50 200 2.42 1.94
50 250 2.73 2.08
50 300 3.08 2.08

100 150 2.43 1.82
100 200 2.43 1.84
100 250 2.53 1.93
100 300 2.52 2.02
150 200 2.42 1.96
150 250 2.43 1.88
150 300 2.37 1.79
200 250 2.48 1.94
200 300 2.74 2.07
250 300 2.21 1.70

Table 1. Ablation study for Canny thresholds. Both errors
are in metres.

erature. With a fast estimation frequency, it is possi-
ble to develop systems that respond in less time when
high-speed flights or with agile movements are carried
out. The error may be acceptable if it is considered
that very high precision may not be required in agile
or high-speed flights.

5. Conclusions
We have explored using a stack of consecutive grey-

scale images and an additional stack of edge images
to pose prediction in this work. The combination of
grey-scale and edge images to feed a two-stream net-
work brings a better prediction than using only grey-
scale. Besides the average error in the prediction of
2.21m, we showed that prediction follows the trajectory
shape with the advantage of performing estimation at
a frequency-time up to 78Hz, which improves most of
the related works.

We will continue investigating combining grey-scale
images with edges and testing our proposal with more
tracks available in the UZH FPV Drone racing Dataset.

References
[1] Debaditya Acharya, Ruwan Tennakoon, Sundaram

Muthu, Kourosh Khoshelham, Reza Hoseinnezhad,
and Alireza Bab-Hadiashar. Single-image localisation
using 3d models: Combining hierarchical edge maps
and semantic segmentation for domain adaptation.
Automation in Construction, 136:104152, 2022. 1

[2] J. Bang, D. Lee, Y. Kim, and H. Lee. Camera pose es-
timation using optical flow and orb descriptor in slam-
based mobile ar game. In 2017 International Confer-
ence on Platform Technology and Service (PlatCon),
pages 1–4, Feb 2017. 1

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000. 2

[4] John Canny. A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-8(6):679–698, 1986. 2

[5] François Chollet et al. Keras. https://keras.io,
2015. 2

[6] J. Arturo Cocoma-Ortega and J. Martinez-Carranza.
A compact cnn approach for drone localisation in au-
tonomous drone racing. J Real-Time Image Proc, 2021.
2

[7] Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq,
Matthias Faessler, and Davide Scaramuzza. Are we
ready for autonomous drone racing? the uzh-fpv drone
racing dataset. In 2019 International Conference on
Robotics and Automation (ICRA), pages 6713–6719,
2019. 2

[8] Mart́ın Abadi et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 2

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings,
2015. 2

[10] Georg Klein and David Murray. Improving the agility
of keyframe-based SLAM. In Proc. 10th European
Conference on Computer Vision (ECCV’08), pages
802–815, Marseille, October 2008. 2

[11] Junxin Lu, Zhijun Fang, Yongbin Gao, and Jieyu
Chen. Line-based visual odometry using local gradient
fitting. J. Vis. Commun. Image Represent., 77:103071,
2021. 1

[12] S. Mansur, M. Habib, G. N. P. Pratama, A. I. Cahyadi,
and I. Ardiyanto. Real time monocular visual odome-
try using optical flow: Study on navigation of quadro-
tors uav. In 2017 3rd International Conference on Sci-
ence and Technology - Computer (ICST), pages 122–
126, July 2017. 1

[13] V. More, H. Kumar, S. Kaingade, P. Gaidhani, and
N. Gupta. Visual odometry using optic flow for un-
manned aerial vehicles. In 2015 International Con-
ference on Cognitive Computing and Information Pro-
cessing(CCIP), pages 1–6, March 2015. 1

[14] Vinod Nair and Geoffrey E. Hinton. Rectified linear
units improve restricted boltzmann machines. In Pro-
ceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10,
page 807–814, Madison, WI, USA, 2010. Omnipress. 2

[15] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek.
Cuda, release: 10.2.89, 2020. 2

[16] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski. Orb: An efficient alternative to sift or
surf. In 2011 International conference on computer
vision, pages 2564–2571. Ieee, 2011. 1

[17] Stanford Artificial Intelligence Laboratory et al.
Robotic operating system. 2

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015. 2

[19] Guido Van Rossum and Fred L. Drake. Python 3 Ref-
erence Manual. CreateSpace, Scotts Valley, CA, 2009.
2

[20] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo:
Towards end-to-end visual odometry with deep recur-
rent convolutional neural networks. In 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 2043–2050, May 2017. 1

[21] YanTong Wu, Yang Liu, and XueMing Li. Position
estimation of camera based on unsupervised learn-
ing. In Proceedings of the International Conference on
Pattern Recognition and Artificial Intelligence, PRAI
2018, pages 30–35. ACM, 2018. 1

[22] Zhichao Yin and Jianping Shi. Geonet: Unsupervised
learning of dense depth, optical flow and camera pose.
In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2018. 1

[23] Zichao Zhang and Davide Scaramuzza. A tutorial on
quantitative trajectory evaluation for visual(-inertial)
odometry. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), 2018. 3

[24] Baigan Zhao, Yingping Huang, Hongjian Wei, and
Xing Hu. Ego-motion estimation using recurrent con-
volutional neural networks through optical flow learn-
ing. Electronics, 10(3), 2021. 1

[25] Wenhui Zhou, Hua Zhang, Zhengmao Yan, Weisheng
Wang, and Lili Lin. Decoupledposenet: Cascade de-
coupled pose learning for unsupervised camera ego-
motion estimation. IEEE Transactions on Multimedia,
pages 1–1, 2022. 1

https://keras.io

	. Introduction
	. Related work
	. Methodology
	. Results
	. Dataset
	. Implementation
	. Training process
	. Experiments

	. Conclusions

