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Abstract

This paper proposes a hierarchical approach to design
the sensing matrix of the single-pixel camera architecture
(SPC), such that the pixel clustering task can be performed
directly using the compressed infrared SPC measurements,
i.e., without needing to perform a previous reconstruction
step. Specifically, a sensing matrix is designed to extract
features directly from the compressed measurements in each
stage of the hierarchical model. Lastly, the final segmenta-
tion map is obtained through the majority voting method
in the partial clustering results at each hierarchy step.
Through simulations and experimental proof-of-concept im-
plementation, we demonstrate that the proposed imaging
system, together with the sensing protocol and the com-
putational algorithm, represents an efficient alternative to
estimate clustering maps without relying on oversampling
sensing protocols.

1. Introduction

Spectral imaging (SI) acquires two-dimensional spatial
information of a scene across a range of spectral wave-
lengths which allows the identification of several target fea-
tures [16]. In particular, spectral clustering is an unsuper-
vised technique that has been successfully employed in SI
classification when the labeled samples are unavailable or
difficult to acquire [10, 12, 13]. This classification task usu-
ally improves as the number of spectral bands increases [6].
However, this requires sensing more information, which
makes spectral data acquisition and processing challenging
under traditional scanning-based methods.

Compressive spectral imaging (CSI) has emerged as a SI
approach that acquires compressed projections of the whole
data cube instead of directly measuring all the voxels [14,
15]. CSI allows to detect and reduce the dimensionality of
the scene in a single step. Consequently, the cost of sensing,
storage, transmission, and processing spectral images using
CSI devices is significantly reduced [1, 4].

Several works in CSI have focused on improve the qual-
ity reconstruction results [2, 3, 7, 11]. However, they are
computationally expensive and present a high convergence
time [19]. It is worth highlighting that traditionally, the
scenes are acquired inside the visible spectrum range for
spectral classification works, i.e., beginning at 400 nm.

In this work, we propose a hierarchical approach to de-
sign a sensing matrix of the single pixel camera (SPC) [5]
such that clustering features are extracted directly from the
acquired compressed measurements. Specifically, at each
level of the hierarchy, a sensing matrix is designed as the
product of a Hadamard matrix and a decimation matrix.
This decomposition allows obtaining a set of features di-
rectly from the compressed measurements exploiting the
properties of the Hadamard matrix. In the proposed ap-
proach, the decimation matrix at a given level is designed
to group more similar spatial features than the previous
level. Therefore, the composite sensing matrix has more
sampling vectors and it is intended to provide more features
than those obtained in the previous level. Lastly, the final
segmentation map is obtained by performing majority vot-
ing on the partial clustering results obtained using the set of
features of each hierarchy level.

2. CSI Acquisition System
The proposed CSI clustering approach in this paper is

performed on the compressed measurements acquired with
the single-pixel camera (SPC), which employs a point spec-
trometer to obtain the spectral information [5]. Specifically,
the objective lens focuses the input 3D scene F, with Nλ

spectral bands and M × N spatial pixels, onto the coded
aperture H ∈ RM×N , that spatially modulates each spec-
tral pixel. The sensing process can be expressed as

Y = HF̂+ ϵ, (1)

where Y ∈ RK×Nλ is the compressed measurements for
K-shots, H ∈ RK×NxNy is the coded aperture with H ∈
{1, 0,−1}, F̂ ∈ RNxNy×Nλ is a matricial version of the 3D
datacube F ∈ RNx×Ny×Nλ , and ϵ ∈ RK×Nλ represents the



additive noise. Furthermore, it is possible to capture several
snapshots by employing a different coded aperture pattern
each time. The compression ratio in this model is given by
γ = K

MN , where γ ∈ [0, 1].
Sensing Matrix Design: Taking into account the struc-

ture of Hadamard matrices, the work in [17] proposes to
design the sensing matrix for each band H as

H = W∆, (2)

where W ∈ {−1, 1}K×K is a Hadamard matrix, and
∆ ∈ RK×MN is a decimation matrix. Recently, a fast spec-
tral image recovery method was introduced in [8], where
authors proposed to design ∆ by obtaining superpixels
from an RGB image which was acquired as side informa-
tion. Specifically, the method named FMR takes advan-
tages of the fact that the inverse of a Hadamard matrix
is its transposes and perform a fast low-resolution recon-
struction for each spectral band as f̃l = (1/K)∆̂WTyl =

(1/K)∆̂WTW∆f l ≈ fl Note that, instead of perform-
ing the complete reconstruction, it is possible to directly
extract features from the compressed measurements. In
particular, features from the l-th band can be obtained as
f̄l = WTgl = ∆f l, where f̄l contains the average spec-
tral information of pixels grouped in segments given by the
structure of the downsampling matrix ∆. It is important
to note that, similar as in [8], in the following sections we
assume that K = Nseg .

3. Proposed CSI Clustering

Taking into account the sensing matrix construction ap-
proach presented in (2), it is possible to design the down-
sampling matrix ∆ to efficiently extract clustering features
from the compressed measurements.

Downsampling Matrix Design: In general, the binary
matrix ∆ ∈ RNseg×MN groups the M ×N spectral pixels
in Nseg segments, such that each component of the vector
f̄l = ∆f l contains the average spectral information of pix-
els grouped in one segment. More formally, denote pe as
the vector of size ne containing the indices of all pixels be-
longing to the e-th segment. Then, the nonzero values of
the e − th row of ∆, denoted in vector form as (δe)T , are
determined by the entries of pe and the value of ne as:

(δe)
T
(pe)j =

1

ne
, for j = 1, · · · , ne, (3)

where (δe)
T
(pe)j

denotes the position in δe indexed by the
j−th entry of the vector pe. The main idea of the proposed
design of ∆ is to group pixels such that similar spectral in-
formation is taken into account. As only the compressed
measurements are available and we do not have informa-
tion from VIS spectrum (we are only interested in NIR), we
propose to design ∆ in an iterative hierarchical fashion such
that Nseg increases (fewer pixels are grouped in one square
(regular) segment) in each iteration. At each iteration it,
Nseg is selected as N (it)

seg > N
(it−1)
seg > · · · > N

(1)
seg such as

Algorithm 1 Downsampling Matrix Design

Require: F̄, Nseg , U. Ensure: ∆
1: kidx ← RegularSegms(U, Nseg) ▷ kidx contains the

segment labels
2: ∆← zeros(Nseg, length(kidx))
3: for e← 1 to Nseg do
4: pe ← find(kidx = e), ne ← length(pe)
5: for j ← 1 to ne do
6: (δe)

T
(pe)j

= 1
ne

▷ Update each row of ∆
7: end for
8: end for

Algorithm 2 Data Clustering

Require: F̄ ∈ RNseg×L, ∆ downsampling matrix, κ clusters
Ensure: Segmentation of the spectral pixels: F1, · · · ,Fk

G← Build Sim Graph(F̄) ▷ κ-nearest neighbor graph ▷
Obtain Cluster indices

2: C̄idx ← Spectral Clustering(G, κ)▷ Spectral Clustering [18]
Cidx ←∆T C̄idx ▷ Upsampling

all the new segments are square and spatially homogeneous.
Then, the pe vectors are built for each segment e, and the
new ∆ matrix is obtained using (3) (see Algorithm 1). Once
the compressed measurements are acquired, the feature vec-
tor f̄l is obtained for each spectral band l, hence the feature
matrix F̄ is constructed as F̄ =

[
f̄1, · · · , f̄L

]
∈ RNseg×L,

where the rows contain the average spectral information of
each segment. Data Clustering: At each iteration of the
main algorithm, the downsampling matrix ∆ is constructed,
and it is used to obtain a partial clustering of the pixels using
a subspace clustering method. Since, at each iteration it, the
number of segments Nseg is increased, this approach can be
seen as a multi-scale clustering of pixels. Furthermore, de-
noting Ns as the number of scales or levels in the hierarchy,
the compression ratio given by using the SPC architecture
and the proposed clustering approach can be determined as
γ̃ = 1

MN

∑Ns

it=1 N
(it)
seg .

In order to perform the data clustering, we construct the
similarity graph G ∈ Rn×n using the κ-nearest neighbor
approach described in [18]. Then, the cluster indices C̄ are
obtained by applying the spectral clustering to the similar-
ity graph. Finally, the cluster membership of all the spectral
pixels in the full image are obtained by applying the upsam-
pling operator ∆T onto C̄, see Algorithm 2. Note that both,
the similarity graph construction and the spectral clustering
computation are performed on the feature matrix F̄. Hence,
the computational performance of the proposed method im-
proves over other traditional approaches.

4. Simulations results

In this section, the proposed hierarchical compressed
subspace clustering method for SPC measurements is tested



Table 1. Quantitative results of different clustering approaches for the Indian Pines and University of Pavia real datasets. FMR [9]+SC
and SPC-HSC [10] acquire SPC measurements from the near-infrared (NIR) and visible (VIS) spectrum, while the others only use the
information from the NIR.

Dataset Class FMR [9]+SC SPC-HSC [10] N-CHSI + SC Fast Recon.+SC, OA: H2SPCI-SC (ours) H2SPCI-SSC (ours)

In
di

an
P. AA 33.00 31.35 35.66 32.55 44.38 54.36

OA 35.76 40.86 33.32 37.08 51.96 53.16
Kappa 0.28 0.32 0.26 0.31 0.47 0.48

Time [s] 37.31 10.91 74.30 28.29 2.66 13.29

U
.P

av
ia AA 46.53 57.01 57.28 46.88 52.53 56.67

OA 43.86 65.35 64.92 51.30 53.28 64.08
Kappa 0.36 0.57 0.58 0.42 0.45 0.58

Time [s] 199.69 67.81 5352.61 1181.82 53.66 913.39

(a) (b) (c)

Figure 1. (a) Sketch of the Single-pixel imaging experimental
setup. (b) Map ground truth. (c) Classification result via major-
ity voting with OA = 85%.

on two real remote sensing hyperspectral datasets: The In-
dian Pines image was acquired on the Northwestern Indian
Pines test site. We crop the Indian Pines to have 128× 128
spatial pixels, and 200 spectral bands and contains 16 land-
cover classes [20]. The University of Pavia image was
acquired over Pavia, Northern Italy. We crop the University
of Pavia image to have 512× 192 spatial pixels and 9 land-
cover clases. Numerical results of the evaluated methods
are presented in Table 1, we shown the average accuracy
(AA), overall accuracy (OA), and Kappa coefficients. No-
tice that for the Indian Pines dataset, the best OA is achieved
by the proposed strategy in this paper, using the “SSC” al-
gorithm.

5. Experimental validation
We built a testbed in our laboratory to demonstrate the

validity of the proposed ideas, through a proof-of-concept
prototype, as shown in Fig. 1 (a). To demonstrate the pro-
posed methodology classification capability, we conducted
experimental validations using one composed target. This
target is composed of four white materials: milk powder,
sugar, bicarbonate, and salt. Using this scene, we aim to
explicitly show the importance of considering the NIR for
classification as pixels of this scene are very challenging
to discriminate using only the information from the vis-
ible spectrum (VIS). For five hierarchical iterations with
Nseg = {42, 82, 162, 322, 642} the resulting compressive
measurement exhibited 512 × Nseg spectrometer pixels in
size. The coded apertures patterns projected by the DMD
were generated via Eq. (2) with a Hadamard matrix size of

W ∈ RNxNy×NxNy and HNseg×NxNy where Nx = Ny =
128. Since the resulting matrix H is composed of {−1, 1}
values and it is not feasible to load negative values in the
DMD [9], the sensing process is carried out by changing the
-1’s values for 0’s. Then resulting binary pattern and a com-
plementary version (i.e., changing 1’s to 0’s and 0’s to 1’s)
of it are projected on the DMD. Finally, the acquired two
measurements per pattern are reduced to y10 − y01 in post-
processing, i.e., y10 and y01 refers to the SPC measurement
generated from the binary and complementary versions.

Figure 1 shows (b) the ground truth map and (c) the cor-
responding clustering map obtained by our method. These
results were achieved by exploiting the NIR information
preserved in the compressed measurements. The higher
classification accuracy was achieved for Nseg = 162 (8× 8
segment size), and the lower one was achieved for Nseg =
642 (2×2 segmente size). Since the pattern’s pixel size pro-
portionally increases with the regular decimation pixel size,
the acquired SPC measurements are more robust to noise
artifacts, a critical consideration in infrared experiments.
Here the classification accuracy obtained using Nseg = 82

is deliberately set aside because it is assumed as an outlier.

6. Conclusions

This work presented a sensing matrix designed to ex-
tract features directly from the compressed measurements
in each stage of the hierarchical model. We demonstrate
that the proposed imaging system, together with the sensing
protocol and the computational algorithm, represents an ef-
ficient alternative to estimate clustering maps without rely-
ing on oversampling sensing protocols. This paper showed
extensive results on simulations and experimental proof-of-
concept implementation. These results demonstrated that
creating the final segmentation map through the majority
voting method in the partial clustering results at each hierar-
chy step with the sensing matrices designed, achieves com-
petitive results against other state-of-the-art methods. The
main contribution presented in this document is the alterna-
tive to spectral clustering in CSI measurements only using
the NIR spectrum and excluding the information from the
traditional visible range.
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