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Abstract
Single snapshot spectral-depth imaging (SDI) recovery

is an open problem in the computer vision community. Few
works have been tackled the SDI problem by introducing
systems that rely either on multiple sensors placed in tan-
dem or low light-efficient diffractive optics approach. In this
work, we propose a single snapshot compressive spectral
depth imager via a pixeled carrier (SDI-PixCar). Specifi-
cally, SDI-PixCar relies on a dual-dispersive sensing and a
pixelated carrier illumination approach to generate a com-
pressed measurement that encodes spectral and depth fea-
tures. The spectral and depth reconstruction is performed
with a convolutional neural network (CNN) based on U-
net. Extensive simulations demonstrate that the proposed
SDI-PixCar represents an efficient alternative to estimate
the SDI.

1. Introduction
Spectral imaging sensors collect spectral information at

every spatial location of a scene. The acquired high dimen-
sional data are commonly regarded as a three-dimensional
structure also known as spectral image (SI) X ∈ RN×M×L,
where (x, y) are its spatial coordinates, and (λ) represents
the spectral wavelengths [21]. The rich spectral informa-
tion contained in the SI is an essential for several appli-
cations such as precision agriculture, monitoring and clus-
tering [5, 14, 24]. There are different techniques for SI
acquisition, such as whiskbroom or pushbroom scanning
systems which have limitations of spatial-spectral resolu-
tion and acquisition times [6, 13]. As an alternative, in-
stantaneous spectral imaging systems such as the coded-
aperture spectral imaging system (CASSI) [2, 15, 16, 23]
or dual-disperser coded-aperture spectral imaging system
(DD-CASSI) [10, 17] can sense spatial-spectral informa-
tion as 2D compressed projections, reducing the amount
of data. On the other hand, 3D shape reconstruction tech-
niques by projecting high power light onto scene are useful
in some areas such as semantic segmentation, autonomous
car driving and security [1, 12, 22]. In this way, depth in-

formation of a scene can be estimated by projecting a set
of structured light (SL) patterns over the surface object.
The most popular SL works are based on the phase-shifting
structured amplitude theory that aims to disambiguate the
depth information from a set of at least three SL projec-
tions [27]. To increase the spectral resolution without re-
sort to scanning protocols, researchers have explored com-
pressive imaging (CI) theory [2, 3] to propose novelty im-
agers and reconstruction paradigms with the capability of
estimate the spectral and depth information from a reduced
set of two-dimensional projections. This framework is com-
monly known as compressive structured light spectral depth
imaging (CSL-SDI), and their sensing paradigm aims to
modulate and compress, at the same time the spectral and
depth information. Conventionally, the CLS-SDIs carry out
this modulation/compression process by taking advantage
of optical elements such as light projectors (LP) [19], bi-
nary coded apertures (CA), color-coded apertures (CCA)
[4], CFMD, and dispersive elements [8]. For the spectral
sensing, the most popular compressive sensing geometry is
CASSI. Although the CSL-SDI systems enable the acquisi-
tion of the SDI with a reduced set of measurements, these
systems are yet limited by the minimum total of projections
requested for the PSA approach. This paper proposes a
CSL-SDI system that acquires compressed measurements
that preserves the spectral and 3D-shape features by multi-
plexing a grayscale and dispersed-coded-dispersed projec-
tion of the scene into a single sensor. The dual-dispersive
sensing geometry and the pixelated carrier interferogram
sensing theory are employed to propose a CSL-SDI system
that captures a dispersed-coded-dispersed measurement re-
sulting from a monocular system employing a single sensor
and prism. The optical architecture does not rely on a cam-
era array but a single imaging sensor with a single coded
aperture and a double Amici prism as a dispersive element.
Moreover, the structured light patterns can be designed in a
way that the whole set of uncorrelated compressed measure-
ments can be used to reconstruct the spectral information.
Further, we use a two-arm U-net-based neural network to
recover the spectral datacube and the phase information [7].
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Figure 1. SDI-PixCar network. The first step we extract the same features from the compressed image and then the features are used
separately in a U-net decoder to estimated the spectral and depth information.

2. Proposed method
We are interested in the spectrum and phase estimation

from single shot. Our general idea is to project on an ob-
ject a single pattern of structured light and acquire a set of
projections that compresses spectral and depth information
from DD-CASSI architecture. Thus, We designed a light
projection geometry that consolidates four different patterns
enabling depth recovery guarantees from a single sensing.
Then, the DD-CASSI sensing model is used to modulate
the spectrum of the patterned object in a single shot.

2.1. Optical Encoder

An object f (x, y, λ) with spatial coordinates (x, y) is il-
luminated on its surface by a projector with structured light
patterns generated from a pixelated carrier [26]. The result
reflected light can be mathematically expressed as

fp (x, y, λ) =a (x, y, λ) + f(x, y, λ) [b (x, y, λ)+

cos (φ (x, y) + ω0 (x, y)),
(1)

where φ (x, y) is the object phase information, ω0 (x, y)
is the spatial carrier, b (x, y, λ) is a balance function
that avoids that fp (x, y, λ) achieve negative values and
a (x, y, λ) represents the background. The bi-dimensional
pixelated carrier ω0 (x, y) gives for each location the phase
step introduced by the pixelated phase mask which encoded
phase/shape information into its deformation on object.

4-in-1 pattern design. Particularly, we project on an
object a pixelated carrier and acquire the reflected light in
a single-shot under the DD-CASSI sensing model avoid-
ing the multi-shot acquisition of use a temporal carrier also
known as linear carrier where the measurements are con-
formed by t shots. In detail, the pixeled carrier is built from
multiple linear carriers to consolidate several different lin-
ear spatial patterns into one [20]. Specifically, we use four
linear carriers to conform our pixelated carrier W ∈ R2×2

with window structure W =

[
0 π/2
π 3π/2

]
that is repeated

along of rows and columns of a matrix structure, such that

W̄ = O⊗W, (2)

where W̄ ∈ RN×M is the pixelated carrier, O ∈
RN/2,N/2 is a ones matrix and ⊗ denotes the Kronecker
product.

DD-CASSI architecture. Our acquisition process in
Fig. 1 is modeled by the DD-CASSI architecture [10] that
modulates the patterned object through a coded aperture un-
der dual-dispersion where two dispersers are symmetrically
placed on the two sides of the coded aperture to overcome
the shear effect of the SD-CASSI [9]. The dual-dispersed
modulated version of the object can be formulated as

g̃(x′, y′, λ′) =

∫∫
h(x′ − x′′ − S(λ′), y′ − y′′, λ′) (3)

×fp(x
′′, y′′, λ′)k(x′′, y′′)dx′′dy′′,

with , k(x, y)=
1

2

∑
i′1,i2

Π

(
x− i′1∆c

∆c

)
Π

(
y − i2∆c

∆c

)
,

where Π represents the rectangle function, Sλ is a
wavelength-dependent function, h(x−x′−S(λ), y−y′, λ)
accounts for the impulse response of the optical system,
∆c denoting the pixel size, ∆λ denoting the spectral band-
width, C ∈ RN×M+L−1 is a binary-coded aperture with
Ci′1,i2

∈ {0, 1}, and i′1 = {0, . . . , (Nx + Nλ − 2)} and
i2 = {0, . . . , Ny − 1} indexing the rows and columns,
respectively. Then, the dispersed-modulated wavefront is
propagated to the prism to correct the dispersion effect.
Finally, the dual-dispersed modulated wavefront is propa-
gated and focused into a detector array to obtain the follow-
ing measurements

g(x, y) =

∫∫∫
h(x− x′ + S(λ), y − y′, λ)

× g̃(x′, y′, λ′)dx′dy′dλ,

(4)

where g (x, y) denotes the spectral + depth compressed
measurements. Mathematically, the linear discrete sensing
from DD-CASSI system according to Eq.4 is formulated as
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Figure 2. Spectral and depth estimation results of the SDI Pix-Car network for three different scenes. The average metric of the full data
using the SDI-PixCar network are SSIM= 0.813 and PSNR=23.81[dB] for spectral estimation and SSIM = 0.892, REL = 0.186 and MSE
= 0.014 for depth estimation.

Gi1,i2 =

L−1∑
i3=0

Ci1,(i2−i3)Fp i1,i2,i3+ϵi1,i2 , (5)

where G ∈ RN×M denotes the compressed measure-
ments, Fp ∈ RM×N×L is the 3D tensor that contains the
spectral response of the scene for the single structured light
projection and ϵ ∈ RN×M represents the additive noise.
The linear sensing model can be expressed as g = Hfp+ ϵ,
where g ∈ Rm is compressed measurement in vector form,
H ∈ Rm×n is the sensing matrix, and ϵ ∈ Rm is the noise.

2.2. Spectrum + depth deep network

We use the U-NET network architecture with a dual de-
coder design. The features are shared for both spectrum and
depth but are independently decoded by two arms, one for
depth and other for the spectrum as shown in Fig. 1. Thus,
the spectral images f and depth map φ are simultaneously
estimated from measurements g as follows

f̂ , φ̂ = NSDI−PixCar (g) (6)

Loss function. the network learning is addressed from
a joint loss, both the structural similarity index measure
(SSIM) [11] and Mean absolute error (MAE) are employed
to recover the spectrum and phase information

L = λs

[(
1− SSIM

(
f , f̂

))
+MAE

(
f , f̂

)]
+ [(1− SSIM (φ, φ̂)) +MAE (φ, φ̂)]

(7)

Training stage. We optimize the spectral + depth net-
work under a preset random coded aperture via backpropa-
gation by solving for the following minimization problem

θ = argmin
θ

L
({

φ̂ (θ) , f̂ (θ)
}
, {φ, f}

)
, (8)

where θ is the set of network parameters. Note that, the
spectrum and depth estimation share feature encoding re-
ducing the number of trainable parameters θ of the neural
network. Additionally, the shared use of the encoder can be
seen as a helpful regularization for the weights.

3. Simulation results
We use a synthetic spectral and depth dataset generated

from the public NYU RGB-D dataset [18]. This dataset is
composed of 1499 files, where each one contains an spectral
secene and the depth map information of the scene. In the
training, we resized datacubes to N ×M = 256× 256 and
L = 31. Then, the dataset is split into 869 images for train-
ing and 630 for testing. The hyperparameters were set up as
follow: batch number 16, epochs number 100, Adam opti-
mizer with learning rate of 1e−4 and regularization param-
eter λs = 1. Figure 2 shows the spectral and depth recon-
struction results obtained for three representative spectral-
depth images. These results prove that SDI-PixCar is ca-
pable to reconstruct the spectral and depth information
from a single compressed measurement. Specifically, the
SDI-PixCar achieves an average Peak signal-to-noise ratio
(PSNR) and SSIM of 23.81 dB and 0.813, respectively, for
the spectral datacube reconstruction. For phase informa-
tion, the SDI-PixCar achieves an average SSIM, REL [25]
and MSE of 0.892, 0.186 and 0.014, respectively.

4. Conclusions
We have developed the SDI-PixCar that enables spectral-

depth image retrieval from a single compressed measure-
ment. Numerical simulations verify the feasibility of the
proposed paradigm with a dual-dispersive spectral system
and a pixeled carrier structured light pattern. The SDI-
PixCar approach is highly potential for SDI applications in
ultrafast imaging, i.e., in scenarios where acquiring multiple
shots per frame is not feasible.
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