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Abstract

Domain Adaptation is a task that aims to translate an im-
age from a source domain to a desired target domain. Cur-
rent methods in domain adaptation use adversarial training
based on Generative Adversarial Networks (GAN). In the
present work, we focus on the task of domain adaptation
from real faces to cartoon face images. We start from a
baseline architecture called XGAN and introduce some im-
provements to it. Our proposed model is called W-XDGAN,
which uses a form of GAN called Wasserstein-GAN, learns
to approximate the Wasserstein Distance, and adds a de-
noiser to smooth the output cartoons. Whereas the origi-
nal XGAN paper only presented a qualitative analysis, the
advantages of this solution are demonstrated both quantita-
tively and qualitatively by comparing the results with mod-
els such as UNIT and original XGAN. Our code and mod-
els are publicly available at https://github.com/
IAmigos/avatar-image-generator.

1. Introduction
One of the main challenges of machine learning is to ob-

tain significant results with unsupervised approaches. This
type of task eliminates the limitation of supervised models
in which the training set and the test set must come from
the same distribution, and feature-label pairs are required
for training [22].

Domain adaptation is defined as the ability to transfer
the knowledge to perform a specific task from one domain
to another in a way that both are related [10,20]. A recently
used approach is to have a feature representation that is not
domain dependent [29]. This is why some methods aim to
learn the underlying attributes of both domains using differ-
ent training objectives such as reconstruction [4] and adver-
sarial [1, 9]. This type of task has a particular application
in images, where an attempt is made to transfer the content
and shape of an image from one domain to another while
preserving the colors and semantic content, better known as

image-to-image translation [23].
Several papers on image-to-image translation have been

reported among which GAN-based models have shown
good results due to adversarial training in an unsupervised
manner. This way of training represents an alternative to ob-
tain non-domain-dependent feature representations. Specif-
ically, conditional GANs in which the input is not Gaus-
sian noise, but an image that is translated to another do-
main [6, 15, 23]. Furthermore, CycleGAN addresses this
task with the use of a pixel-level consistency loss [31].
XGAN (Cross-GAN), on the other hand, introduces a con-
sistency at the level of the latent space shared by both do-
mains (semantic representation) [23]. However, the latter
lacks stable training in the feature space shared by both do-
mains, leading to mode collapse [3].

In this paper, improvements in XGAN are proposed by
replacing the Binary Cross Entropy (BCE), which classi-
fies both domains, with Wasserstein Loss, which approx-
imates the Wasserstein Distance [2, 25], in order to solve
the domain adversarial task in the shared latent space. In
addition, we propose to add a denoiser following the out-
put of the cartoon generator. This denoiser eliminates
speckle noise and incorrect coloring of the generated im-
ages [24]. Furthermore, we changed the training procedure
of the GAN used to improve sample quality in XGAN [23]
to WGAN-GP [2, 13]. The model we propose is called
W-XDGAN (Wasserstein-Cross-D-GAN). These improve-
ments were measured with the Fréchet Inception Distance
(FID) [14], which is used to compare the distribution of
the generated cartoons with the original ones. The VGG-
Face [21] and the CartoonSet datasets, proposed by [23],
were used for experimentation in the Section 4.

2. Related Work
Some deep learning models have recently been pro-

posed to tackle the problem of unsupervised image-to-
image translation. In [23], the authors generalized the prob-
lem of style transfer to a higher level of semantics by learn-
ing to couple two domains with shared semantic content but



Figure 1. Cohesive View of the proposed W-XDGAN based on XGAN. The components e1 , e2 , d1 , d2 represent the autoencoder that
acts as a generator. First, an image from face domain (D1 ) or cartoon domain (D2 ) fed the encoder to generate a feature representation.
Then, the decoder receives the latent space and learns to generate an image from the other domain. Finally, if the image is a face, which
means that it belongs to D1 , the generated cartoon is sent to the denoiser in order to enhance the image quality.

different representation. They experimented with the sub-
domains of cartoon face images and real face images. The
model they introduced is XGAN, which is based on two
encoder-decoder networks with a shared latent space that
generates a shared representation of the common domain
semantic content. Their main contribution is the semantic
consistency loss which encourages the model to preserve
semantics in the learned embedding space. Similar to this
work, UNIT [18] implemented a coupled VAEGAN archi-
tecture with a shared latent space trained with pixel level
cycle-consistency. Their model learns a joint feature-level
representation but they do not use a semantic consistency
component. The works of CycleGAN [31], DualGAN [27],
and DiscoGAN [16] which are based on GANs report good
results for image-to-image translation when both domains
are close to each other, but fail for more significant shifts.
These models do not share the latent space and only con-
sider pixel to pixel consistency.

3. Proposed Method

In this section, we detail the architecture we propose
based on XGAN.

3.1. XGAN Model

We rely on XGAN as a baseline model. The goal of this
model is to learn the domain transfer from two unpaired
domains [23] in an unsupervised way using two encoder-
decoder networks, one for each domain, in such a way that
both share the last layers of the encoders and the first lay-
ers of the decoders to push the representations to the same
latent space. Both the encoder and the decoder use convo-
lutional and deconvolutional layers, respectively. Further-
more, XGAN uses the objective of a GAN in which the dis-
criminator tries to make the generated examples as realistic
as possible.

The training objective consists of five weighted loss
functions that control the contribution of each of them and
the architecture is shown in Figure 1. Given domains D1

and D2, Lrec reconstructs the image of both domains by
comparing it to the original one using L2norm . Ldann acts
as a small GAN in the middle of the latent space using a
classifier as a discriminator. This method was introduced
by [10], whose goal is to keep the latent space of both do-
mains indistinguishable. In this case, instead of using typi-
cal GAN training, the gradient encoder layer is connected to



Figure 2. Random Generated Cartoon Samples by the configurations described in Table 1. Configuration A: XGAN model +
Denoiser. Configuration B: XGAN model + Denoiser + Wasserstein Loss for Domain Adversarial Task. Configuration C (W-XDGAN):
XGAN model + Denoiser + Wasserstein Loss for Domain Adversarial Task + WGAN-GP instead of GAN. Configuration D: W-XDGAN
without spectral normalization. Configuration E: W-XDGAN trained with Cartoon to Face Discrimator. Visual artifacts were observed
across most configurations such as background noise, asymmetry in the eyes, uneven coloring and incorrect color matching in hair and
skin, accidental glasses, and messy blurred hair. The most stable cartoons were obtained by the W-XDGAN model.

the reverse layer which transmits the gradient with the op-
posite sign [10]. Lsem is the main contribution of XGAN,
as it acts as semantic consistency, i.e., instead of compar-
ing the output images at the pixel level, it compares them
in a high-level representation in the semantic latent space.
This is calculated from the L1norm distance between two
vectors obtained by domain translation of the input image
in the latent space at the end of the encoders [23], as shown
in Figure 1. Lgan , on the other hand, is the typical loss
function of adversarial generative models [12]. Finally, we
decided not to use the optional loss function Lteach , which
acts as a kind of regularization to guide the latent space of
faces to a better representation, but only acts in one domain,
which is why it is asymmetric. Consequently, there is a risk
of generating the opposite effect of Ldann [23]. All these
components are summarized in the Equation 1.

Lxgan = ωrLrec + ωdLdann + ωsLsem + ωgLgan (1)

3.2. Improving Quality and Stability

In this section we will present the main contributions of
our proposed model.

3.2.1 WGAN-GP instead of GAN

The type of Generative Adversarial Networks introduced
by [25] have shown good results in generating images from
two models that compete with each other while each one
improves at the same time. The original method uses a
classifier to determine if the sample is real or fake using
binary cross entropy. However, the main problem with this
approach is that the discriminator usually outperforms the
generator by far, since the task of the former is to determine
a value between 0 and 1, while the generator tries to assem-
ble an image in three channels [26]. For this reason, it is
difficult to train a GAN.



Wasserstein GAN (WGAN) was introduced by [2] as an
alternative to cope with the aforementioned problems. This
algorithm approximates the Earth Mover’s Distance, which,
can be understood as the minimum amount of land that must
be passed from one distribution to another so they are equal.
Its main benefit is that the loss function no longer has the flat
regions that caused the vanishing gradient problem. Conse-
quently, the training is more stable. In addition, [13] in-
troduces a regularizer component at the gradient level that
forces it to have a maximum of 1, which is called Gradient
Penalty (GP). The formulation of this WGAN with Gradi-
ent Penalty (WGAN-GP) loss function described before can
be seen in Equation 2.

Lgan = min
G

max
D

Discriminator Loss︷ ︸︸ ︷
Ex∼Pr

[D(x|y)]− Ex̃∼Pg
[D(x̃|y)]

+λ

Gradient Penalty︷ ︸︸ ︷
Ex̂∼Px̂

[(||∇x̂D(x̂|y)||2 − 1)2],

(2)

Additionally, [19] proposes spectral normalization as an
additional way to stabilize the training of GANs. This is ap-
plied after the convolutional layers in the discriminator. We
demonstrate in the experiment Section 4.3 that the cartoons
generated with this approach are more diverse and more re-
alistic according to the FID metric.

3.2.2 Replacing the Domain Classifier

As stated above, the current XGAN model uses a domain
classifier at the end of the shared encoder layers. This is to
enhance cross-domain transformations [23]. In other words,
it tries to get both learned embeddings to be in the same la-
tent space. We observed with the use of t-SNE that the vec-
tors fall into different spaces of the domain as it is trained.
That is, the classifier destabilizes over the epochs.

In that sense, we chose to replace the domain classifier
with a network that learns to approximate the Wasserstein
Distance [25]. The reason is to provide more stable training
by avoiding to fall into those flat regions where the gradient
is zero, and thus verifying that the learned embeddings fall
into the same latent space even over long training periods.
This phenomenon is verified in the Section 4.

This approximation of the Wasserstein Distance [2] can
be achieved from the Ldann shown in Equation 3, keeping
the use of the gradient reversal layer to invert the order of
the transmitted gradients [10]:

min
θe1 ,θe2

max
θcdann

Domain Adversarial Loss︷ ︸︸ ︷
Ex∼D1

[cdann(e1(x))] + Ex̃∼D2
[cdann(e2(x̃))]

+λ

Gradient Penalty︷ ︸︸ ︷
Ex̂∼Dx̂

[(||∇x̂cdann(ê(x̂)))||2 − 1)2],
(3)

3.2.3 Denoising and Color Correction of the Gener-
ated Cartoons

The results of the XGAN model usually show incomplete
reconstructions and poor colorization. To deal with this
problem, we experimented with the use of a denoising au-
toencoder as mentioned in [24]. This denoiser improves the
results at the FID level (see experiment Section 4.3) since
it removes noise from poorly generated images. This is
achieved from a reconstruction of the original image with
the generated image, just like Lrec , but the difference is that
this is a separate model, so the gradients do not propagate
to the generator (see Equation 4).

Lden = Ex∼pD2(||x− den(x̂)||2), x̂ = d2(e2(x)) (4)

4. Experiments and Discussion

In this section, we will show the experiments followed
quantitatively and qualitatively to demonstrate the effective-
ness of our improvement proposal. First, we compare the
improvements with respect to the original XGAN model,
without the introduction of the teacher loss and with a sin-
gle discriminator which is the domain of cartoons. Then,
we show from grid search that some contributions of the
loss functions mentioned in Section 3 have a more relevant
weight in the task of generating images. Finally, we com-
pare our best model, given in the previous step, with the
UNIT [18] model, which has shown promising results in
the domain adaptation task. For this reason, we evaluate the
task in generating images from the domain of faces to car-
toons. In addition, we use more face images to demonstrate
that more diverse images are necessary for more favorable
results.

We implemented the baseline model XGAN from
scratch because no code was available in the original work
[23] and used the original implementation 1 in the case of
UNIT [18].

The model was trained with 64x64 images and 4 ADAM
optimizers [17] were used in total for the generator, discrim-
inator, denoiser and domain adversarial task. All the models

1https://github.com/mingyuliutw/UNIT



(a) XGAN: Faces Encoder and Cartoons Encoder. SD=-0.06 (b) W-XDGAN: Faces Encoder and Cartoons Encoder. SD=0.03

Figure 3. t-SNE Embedding - Visualization of the latent spaces for Faces Encoder and Cartoons Encoder

(a) XGAN: Faces Encoder and Generated Cartoons Encoder. SD=0.10 (b) W-XDGAN: Faces Encoder and Generated Cartoons Encoder.
SD=0.01

Figure 4. t-SNE Embedding - Visualization of the latent spaces for Faces Encoder and Generated Cartoons Encoder

were run at 200 epochs on a Lambda Deep Learning Work-
station (lambdalabs.com) with four GeForce RTX 2080
Ti GPU cards installed on a system running the Ubuntu
18.04.5 LTS operating system.

4.1. Datasets

We have used the same datasets used by [23] for this
cross-domain translation task. The dataset used as the target
domain is called CartoonSet [23]. This dataset is a collec-
tion of random-generated 2D cartoon face images, provided
in 10k and 100k sets. The second one, used as the source



Figure 5. Random Generated Cartoon Samples by different models: XGAN, UNIT and Our Proposal. Some important visual
artifacts appear with less frequency in the generated images by the W-XDGAN model such as background noise, blurred and messy hair,
and incorrect color matching in hair and skin.

domain, is called VGG-Face dataset [21]. This is composed
of real people’s frontal-face images.

As the CartoonSet contains labeled attributes, an ex-
ploratory analysis was possible to do. On the contrary,
the VGG-Face dataset does not have additional information
about the images. This is why an analysis of the distribu-
tion of the latter dataset was not achieved and the possibly
unbalanced data could cause a bias in the trained model.

Once the exploratory analysis was performed, the bal-
ance of the attributes was verified. In addition, a filtering of
the images was carried out to reduce the number of atypi-
cal attribute combinations. The total amount of images used
from the CartoonSet was 35,134, using a 90/10 training/test
split.

Moreover, we preprocessed the VGG-Face dataset by
cropping the face bounding box and removing the back-
ground of the images using the Keras’ PSPNet [30] pre-
trained segmentation model trained on the Pascal VOC
2012 dataset [8]. As there were some images in which the
preprocessing did not have good results, these images were
removed. The total amount of images used from the VGG-
Face dataset was 2,361, using a 90/10 training/test split.

4.2. Evaluation Metrics

The task of unpaired domain translation is known to be
better evaluated through qualitative analysis. However, we
propose image comparison through Fréchet Inception Dis-
tance (FID) as proposed by [14]. We used FID in order to
better capture statistics between synthetic and real images,
as explained by [14]. Statistics from distributions of both

synthetic and real images were obtained in the test dataset
explained previously with the Inception V3 model using the
final average pooling layer. FID has been used in several
other works to evaluate the quality of synthetic images gen-
erated by GANs such as in [28], [5], [11].

Additionally, experiments on the learned shared latent
space were conducted. We applied t-SNE on the encoded
latent space of the test images previously referred, and ob-
tained a Silhouette Distance (SD) to evaluate the clustering
capacity and coherence. Finally, we verified these results
with qualitative analysis on the t-SNE in a similar way as
in [7], and on the synthetic and real images for each cluster
obtained.

4.3. Domain Translation

Before diving into the comparison with UNIT, we first
demonstrate experimentally that the properties we added
improve sample quality.

In Table 1, we compare the FID for various architectures
of the proposed model starting from the baseline XGAN
model. It is observed that all improvements outperform
XGAN. It is important to mention that the added config-
urations have a high computational cost.

We start with configuration “A” which contains the de-
noiser. With this, we confirm the importance of adding this
at the end of the generator since the FID is 106.85 which is
lower compared to 159.36 of XGAN. Then, we replace the
domain classifier loss by Wasserstein Loss as mentioned in
Section 3 and use the spectral norm. Compared to config-
uration “A”, this configuration (“B”) clearly improves the



Configuration Denoiser Domain Adv. Loss GAN Objective Spectral Norm. Discriminators FID

XGAN - BCE GAN - D1−→2 159.36
A ✓ BCE GAN - D1−→2 106.85
B ✓ W. Loss GAN ✓ D1−→2 86.48
C (W-XDGAN) ✓ W. Loss WGAN-GP ✓ D1−→2 70.96
D ✓ W. Loss WGAN-GP - D1−→2 123.32
E ✓ W. Loss WGAN-GP ✓ D1−→2 and D2−→1 81.74

Table 1. Evaluating different configurations. The FID score between real and generated cartoons. The second and fifth columns describe
whether the Denoiser and the Spectral Normalization are used, respectively. The third column describes whether Binary Cross Entropy or
Wasserstein Loss was used as the Domain Adversarial Loss. The fourth column describes the Generative Adversarial Network objective:
base GAN or Wasserstein GAN with Gradient Penalty. The sixth column describes the Discriminators used: Face to Cartoon translation
(D1−→2 ) and/or Cartoon to Face translation (D2−→1 ). Random samples generated by these configurations are shown in Figure 2. The
Weight hyperparemeter values of all these configurations are ωd = 0 .93 , ωg = 0 .98 , ωr = 1 , ωs = 0 .45 .

FID score of the model, which decreases from 106.85 to
86.48 (19% less). Also, as demonstrated in [2], the use
of the Wasserstein Loss avoids falling into mode collapse;
that is, the generated cartoons are more diverse. The last
configuration (“C”) contains the improvements mentioned
above along with the change from GAN (discriminator) to
WGAN-GP (critic). Although the difference is not so great
with respect to configuration “B”, it is observed that there is
a total difference between the baseline model XGAN with
configuration “C”. Mainly, this is due to the fact that, as
mentioned in [23], the combination of Lgan and Lsem can
be understood as two subtasks of Ldann . Because the way
of training has not changed, we say that this behavior does
not depend on the type of loss function (Binary Cross En-
tropy or Wasserstein Loss), but on the weights that each of
them have in the final function.

Additionally, in order to demonstrate the use of spectral
norm, we train the model with configuration “C” without
the use of the spectral norm (“D”). In Table 1, a value higher
that the one obtained with its use (“C”) is observed. This
suggests that the stability of the model is affected by the
spectral norm. On the other hand, as suggested in [23], it is
not necessary to train two discriminators. With one of them,
which should be the domain for cartoons, it is enough. To
verify this, configuration “C” was trained but with the use
of the cartoon-to-face domain discriminator (“E”) and the
results show that there is not much difference, but more time
is needed since more parameters are used. The generated
samples by all these configurations are shown in Figure 2.

4.4. Evaluation in the Latent Space

We investigate the structure of the latent space of the
embeddings learned by the encoders of each domain. For
this, we take the model of configuration “C” (see Table 1)
and compare the latent space with the XGAN model us-
ing t-SNE. In this case there are two types of embeddings.
The first one, face encoder and cartoon encoder, is obtained

from the independent coding of images from both domains
until reaching the end of the shared layers of the encoders
at the bottleneck of the model. The second one, face en-
coder and generated cartoon encoder, is obtained from the
encoding of an original face image and its corresponding
generated cartoon encoded again in the latent space. This
is used to determine if the semantic consistency, proposed
by [23], preserves its characteristics when a face image is
transformed into a cartoon.

4.4.1 Face Encoder vs Cartoon Encoder

In this analysis, the Ldann loss function is taken into ac-
count, which task is to make the domains fall into the same
latent space, but at the same time distinguish between them
[23]. This means that they should not be far from each other
and also that they should be grouped together. In Figures 3
and 4, it is observed that in both cases the latent space of
the faces encoder falls in the same space as the cartoons
encoder, but in the original XGAN model these are indis-
tinguishable. On the other hand, with the “C” configuration
it is evident that a group of only faces encoders was formed.
This is also supported by the Silhouette Distance which is
0.03 compared with 0.06 of the XGAN model. This ar-
rangement of the latent space is a better point of equilibrium
to share the semantic information between the domains, as
seen in the results evaluated with FID in Table 1 compared
to the original XGAN. In fact, it is shown that the use of
Wasserstein Loss as a replacement for the Domain Classi-
fier Loss in the latent space performs this task in a better
way.

4.4.2 Face Encoder vs Generated Cartoon Encoder

In this case, the Lsem task, that tries to push the seman-
tic characteristics of a face image and its generated cartoon
in the same space, is taken into account. This means that
even though the face has been transformed, its high-level



ωd ωg ωr ωs FID

100 0.1 100 100 139.21
0.1 0.1 100 0.1 127.93
0.1 10 100 10 110.39

100 10 100 100 104.38
0.1 10 100 100 99.73
0.1 0.1 0.1 0.1 94.90
0.1 10 0.1 10 93.24
0.1 100 100 100 90.68

100 10 100 10 89.20
0.1 10 100 0.1 85.61
0.1 100 100 0.1 84.79
0.1 100 100 10 82.04

100 0.1 100 10 79.54
100 0.1 100 0.1 74.80
0.93 0.98 1 0.45 * 70.96
100 10 100 0.1 60.43

Table 2. Grid Search in W hyperparameters. The FID score for
the configuration C with different values of the Weight contribu-
tion. FID of the configuration C with fixed W hyperparemeters (*)

semantic features are comparable. In both, the “C” configu-
ration and the XGAN model, this behavior is visible. Also,
the Silhouette Distance has a value very close to 0. This
means that the group vectors (original faces and generated
cartoons), which we know to be related, fall at the same
points (See Figures 3 and 4).

4.5. Sensitivity to Hyperparameters

In the experiments shown above, fixed hyperparameters
were used to control the contribution of each loss function.
However, we believe that the training procedure is sensitive
to these values. Therefore, we train various models from a
grid search with values of 0.1, 10, 100. Table 2 shows the
FID values according to this experimentation. It is observed
that the most determining value is the weight of the Ldann .
This is understandable since it is the part that determines
whether the embeddings of both domains fall into the same
latent space as shown in Section 4.4. The better the em-
beddings are represented in the latent space, the better the
adaptation of the domain of faces to the domain of cartoons
will be. Another detail to analyze is that the weight given
to the Lsem loss function should not be so high, since it was
observed in Section 4.4 that this can be easily achieved. A
high value in the contribution of this value causes the even
representation in the latent space to be lost, as demonstrated
by observing the value of the FID in Table 2.

4.6. Comparison with UNIT

Moreover, we compare our best model, obtained by op-
timization with grid search, with one of the models that

Method FID (original data) FID (aug. data)

XGAN 159.36 -
UNIT 114.25 225.81
W-XDGAN 60.43 55.30

Table 3. Comparison between XGAN, Proposed W-XDGAN
and UNIT. The FID score between real and generated cartoons
under original data and augmented data

has good results in the domain adaptation task, which is
UNIT [18]. This was trained with the same settings as our
proposed model. Table 3 shows the result under two dif-
ferent amounts of images of the domain of faces. We in-
crease more face images, because there is a clear imbalance
between the amounts of images of both domains. In both
cases, the FID value suggests that our model outperforms
UNIT. The generated samples are shown in Figure 5.

5. Conclusions and Further Work

This paper introduced several improvements to the
XGAN model for the domain matching task. By stabiliz-
ing the training, it was possible to generate better cartoons
compared to the XGAN and UNIT ones. This was achieved
thanks to the replacement of the domain classifier loss with
Wasserstein Loss, which helped regularize the latent space.
Besides, the denoiser plays an important role in order to re-
move possible bad cartoon generation, as it improves the
quality of the cartoons making them more realistic. Finally,
although its function is not so relevant at the beginning, re-
placing the GAN discriminator with the WGAN-GP critic,
that tries to approximate the Wasserstein Distance, stabi-
lized the training. We demonstrated all of this quantitatively
by showing the value of the FID in the experiments.

As future work, we believe that it is important to bal-
ance the number of images of the domains in question. This
would add diversity, as some of the generated cartoons tend
to show red colors and other biased features partly due to
the data imbalance between domains. In addition, new ar-
chitectures such as diffusion models have shown promising
results in image generation in recent years. It would be in-
teresting to experiment with these in the domain translation
task.
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