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Abstract

We propose a deep learning methodology for multivari-
able regression based on pattern recognition triggering fast
learning over sensor data. Our sensors-to-image conver-
sion enables us to take advantage of Computer Vision archi-
tectures and training processes. We also explore the use of
state-of-the-art architectures to generate regression outputs
to predict agricultural crop continuous yield information.
Finally, we compare with some of the top models reported in
MLCAS2021. We found that using a straightforward train-
ing process, we were able to accomplish an MAE of 4.394,
RMSE of 5.945, and R2 of 0.861.

1. Introduction

In the recent years, machine learning algorithms have
been improving dramatically in different areas. Unsuper-
vised methods have been incorporated in the deep learn-
ing field to solve image-based problems, sound, and text.
With neural network architectures changing continuously
the training process is also changing. Some works have
made changes into the backbone network [13] to achieve
better results. But sometimes innovation prevents simpler
ideas from being developed. Here, we present our work that
combines state-of-the-art image architecture and regression.

Inspired by the data provided in [10], which contains in-
formation of multiple sensors with time-stamp. We decided
to take a different approach and explored the conversion of
this dataset into images (Section 3.1). First, we explored the
conversion of sensor data into an accurate image-like data,
and then make changes in the neural network architecture as
common CV architectures do not tend to give regression as
output which was the case for our model. This allows us to
perform multivariable regression as in [1] which is pattern-
driven instead of data-driven.

In this work, we present two major contributions. First is
constructing sensors-to-image conversion in which tabular
data can be represented as an image. This facilitates the use

Figure 1. Three samples of tabular input data (x) converted to an
image mapped, by our model f(x) , to their predicted (y) value.

of modern CV architectures. Secondly, using these sensors-
to-image samples to predict continuous crop yield values.

2. Related Works
Long short-term memory (LSTM) based architectures

usually take a lot of resources to perform the training pro-
cess.We, hence, explored methods performing regression
over images leading to image age detector, which affirmed
our concerns. [9] deals with the creation of two Convolu-
tional Neural Networks (CNNs), to predict gender and age
with a classifier instead of a regressor. [4] works on predict-
ing the rotation angle of given images. A similar idea can
be seen in [8], which shows a CNN regression framework
for predicting 3D pose estimation. We explore the conver-
sion of sensor data into images such as [15]. Therefore,
their conversion was more complex than in this work, but
the idea of generating these images is viable. Visualizing
sound as images [3, 11] with DNNs improves accuracy and
reduces computational requirements from classical methods
of event or pattern recognition [7]. Earlier proposed solu-
tions require conversion and generation of custom CNN [2].
Detecting patterns requires much pre-processing with fea-
ture engineering. The process is time-consuming and re-
quires extensive study of the correlations.

3. Method
In this section, we explore the input pipeline, architec-

ture design, and our methodology.



Figure 2. Proposed model architecture. The input is the pre-processed image like 3D-array passed to Convolutional Neural Network
(Feature Learning). Using an Adaptive Concat Pooling mechanism and FCN the required single regressor output is generated.

3.1. Input Data

We use Soybean Crop Yield dataset found in the ML-
CAS2021 challenge. It is a temporal data computed in real-
time and is composed of 93000 samples over 214 days with
seven sensor readings, each pointing to a Single Crop Yield
(y). There are some additional information such as geno-
type ID, location ID, and year for each sample, which are
also treated like sensor data by us. Sensor readings can be
noisy due to different measuring speeds of the dataloggers
[6]. The initial assumption is that all the data is measured
over the same time-space, corrected, or spread to a fixed
tabular form. Sensor data is considered as the ranges for
sensors are absolute, ensuring that on normalization stage
in pre-processing values are between 0 and 1.

3.2. Pre-processing

Before feeding machine learning models with input data,
the original data is pre-processed and statistically analyzed
extensively. This process is time-consuming and requires
human and computer resources to verify the correlation of
the data to the output it is being trained with. Our process
converts tabular data into images. The input data is arranged
as rows with time along the y-axis and apply a Row Nor-
malization technique. Each row is normalized based on the
absolute range of the sensors Eq. (1) to ensure that the final
table contains values between 0 and 1.

−→xij =
xij − σ(si)

λ(si)− σ(si)
(1)

where −→xij ∈ [0, 1] is the normalized data point at positions
i, j. The values in xij represent the original tabular data in
which i represents the row (our sensor), and j the time in
our dataset. In addition, σ(si) and λ(si) represent absolute
minimum and maximum values of sensor si ∈ S where S
is the set of all the sensors.

Our data preparation method explained above can be fed
directly to CNNs without major modifications to the archi-
tecture. The tabular data must be across a common mea-
surement axis, such as time series or measured at the same

interval. Missing values are accommodated with the pre-
vious value ensuring noise is reduced to a minimum in the
input data. Fig. 1 shows how the data can be visualized with
patterns.

3.3. Model Input

We directly generate a 3D data array in range 0 and 1.
The data is normalized specifically to each row and not
batch normalized for the entire slice. Normalization is per-
formed since each row is sensor data over time with abso-
lute ranges. On experimentation using a batch normaliza-
tion method with unique time-series data, sensors with very
small ranges were found to have limited or low impact on
the final results. The generated data (Fig. 1) is fed into the
models to maximize the learning ability of neural networks
instead of solving for best fit.

3.4. Architecture Design

The model relies on the feature learning, heavily used
in CNN classification models. We modify layers to convert
them into a regression pattern model Fig. 2, which outputs
a single regression yield output instead of class probabil-
ity with softmax. Instead of classification, we introduce an
Adaptive Concat Pool layer(combination of Adaptive Aver-
age Pool and Adaptive Max Pooling layers) after the feature
learning layers to understand regression data. This custom
layer allows us to convert the problem into a FCN approach
to the regression values. The use of DNNs with different op-
timizers and fixed hyper tuning allows us to maximize the
results. These adjustments that followed the state-of-the-art
architectures create a single output for each 3D input.

4. Experiment
We evaluate our approach with different state-of-the-art

machine vision models. We conducted our experiment on
Crop Yield Regression Task [10]. It is a multivariable re-
gression problem with 7 daily variables measured over a
fixed time period of 214 days. We run our models on
Intel i9-10900k CPU with 128 GB 2666MHz RAM and



Models
Performance Resnet 50 EfficientNet

B0
ResNeXt
50

SGD 4.529 5.535 4.394
MAE↓ ADAM 5.496 5.232 5.371

LARS 4.644 6.577 5.191
SGD 5.963 7.312 5.945

RMSE↓ ADAM 7.258 6.958 7.118
LARS 6.266 8.586 6.889
SGD 0.849 0.789 0.861

R2 ↑ ADAM 0.792 0.809 0.799
LARS 0.845 0.709 0.812

Table 1. Performance metrics with different standard models using
different optimizers. All models run with the learning rate and
batch size specified in Section 4.

Competition Model Performance
Teams approaches MAE↓ RMSE↓ R2 ↑
QU(exp006) Statistical

Modelling
4.41 5.89 0.87

CUFE ensemble Re-
gression

4.42 5.95 0.86

Star M/4*1D-CNN
with Ensemble

4.47 5.95 0.86

Elendil M/7*1D-CNN
with Ensemble

4.47 5.95 0.86

AA2 XgBoost 4.6 6.15 0.85
PBMR-DP ResNeXt 50 -

SGD
4.39 5.94 0.86

Table 2. Comparison with the models submitted in MLCAS2021 .

NVIDIA RTX 3090 with 24 GB VRAM. For our experi-
ments, the learning rate was set to 1e−03 with a batch size
of 128 for 1,000 epochs and MSEloss or L1-loss. We fol-
low [5, 12, 14] to construct the Feature learning stage of the
models (depth). The pooling layer is modified to a custom
Adaptive Concat Layer with Fully connected layers pointed
to a single output.

4.1. Performance Metrics

We used the standard metrics such as Mean Average Er-
ror (MAE), Root Mean Square Error (RMSE), and R2 to
evaluate the performance. The loss function used in the
model is MSEloss or L1loss. K-cross-validation is per-
formed to overcome over-fitting of data. The data was
tested and compared with the same test dataset as the ML-
CAS2021 competition to keep the results and metrics con-
stant and form a common comparison baseline.

Regression Analysis Performance
Techniques MAE↓ RMSE↓ R2 ↑
Linear Regression 6.100 8.121 0.740
Elastic Net 9.103 11.548 0.471
LASSO 9.987 12.790 0.363
SVR-RBF 5.976 7.875 0.758
Stacked-LSTM 5.484 7.276 0.792
Temporal Attention 5.441 7.239 0.795
PBMR-DP 4.394 5.945 0.861

Table 3. Different performance metrics on the Soybean Crop Yield
Data performed using the published ML models.

5. Results and Discussions

Table 1 shows the results gathered when comparing
the different networks with different optimizers such as
Stochastic Gradient Descent, Adam Optimizer, and LARS
with the same parameters and metrics described in 4.
ResNeXt50 with SGD optimizer performed the best in the
three different metrics used for this experiment. The second
and third best models were ResNet50 with SGD and LARS,
respectively.

Table 2 shows the performance of different teams from
the MCLAS Challenge. Most of the results involved us-
ing ensemble techniques to combine weights generated us-
ing different models to get the best results. Our approach
is much simpler in comparison and outperforms the meth-
ods in the competition except for one method. Our model
is trained without optimizing any hyperparameters as we
wanted our solution as a general method.

Table 3 shows the crop yield prediction dataset results.
Our results prove a significant increase in prediction per-
formance. In addition, our approach allows faster data to
model regression without the need for analysis of the corre-
lation between the inputs and the output. This table shows a
comparison with previous works over same dataset. We see
that our model outperforms each of these methods.

6. Conclusion

This work provides a pattern-based approach for multi-
variable regression. With our sensor-to-image conversion,
we bring computer vision and convolutional neural network
techniques to regression tasks. Our method of sensor-to-
image conversion is completely lossless. Our experiment
with multiple models and different optimizers proves the
validity of our method. We have outperformed every classi-
cal approach and are at par with the best ensemble methods.
In addition, we hope to make a significant impact with tabu-
lar data and advance the research even further in these areas.
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[3] Sören Becker, Marcel Ackermann, Sebastian Lapuschkin,
Klaus-Robert Müller, and Wojciech Samek. Interpreting and
explaining deep neural networks for classification of audio
signals, 2019. 1

[4] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Im-
age orientation estimation with convolutional networks. In
GCPR, 2015. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 3

[6] Jiztom Kavalakkatt Francis. Cloud-Based Multi-Sensor Re-
mote Data Acquisition System for Precision Agriculture
(CSR-DAQ). PhD thesis, Iowa State University, 2019. Copy-
right - Database copyright ProQuest LLC; ProQuest does not
claim copyright in the individual underlying works; Last up-
dated - 2021-05-22. 2

[7] Zvi Kons and Orith Toledo-Ronen. Audio event classifica-
tion using deep neural networks. In INTERSPEECH, 2013.
1

[8] Siddharth Mahendran, Haider Ali, and Rene Vidal. 3d pose
regression using convolutional neural networks, 2017. 1

[9] Abdullah M. Abu Nada, Eman Alajrami, Ahemd A. Al-
Saqqa, and Samy S. Abu-Naser. Age and gender prediction
and validation through single user images using cnn. In Se-
mantic Scholar, 2020. 1

[10] Johnathon Shook, Tryambak Gangopadhyay, Linjiang
Wu, Baskar Ganapathysubramanian, Soumik Sarkar, and
Asheesh K. Singh. Crop yield prediction integrating geno-
type and weather variables using deep learning. PLOS ONE,
16(6):e0252402, Jun 2021. 1, 2

[11] Sugianto Sugianto and Suyanto Suyanto. Voting-based mu-
sic genre classification using melspectogram and convolu-
tional neural network. In 2019 International Seminar on
Research of Information Technology and Intelligent Systems
(ISRITI), pages 330–333, 2019. 1

[12] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020. 3

[13] Subrahmanyam Vaddi, Dongyoun Kim, Chandan Kumar,
Shafqat Shad, and Ali Jannesari. Efficient object detection
model for real-time uav application, Jan 2021. 1

[14] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks, 2017. 3

[15] Chao-Lung Yang, Zhi-Xuan Chen, and Chen-Yi Yang. Sen-
sor classification using convolutional neural network by en-
coding multivariate time series as two-dimensional colored
images. Sensors, 20(1), 2020. 1


	. Introduction
	. Related Works
	. Method
	. Input Data
	. Pre-processing
	. Model Input
	. Architecture Design

	. Experiment
	. Performance Metrics

	. Results and Discussions
	. Conclusion

