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Abstract

Single-photon avalanche diodes (SPADs) are an emerg-
ing pixel technology for time-of-flight (ToF) 3D cameras
that can capture the time-of-arrival of individual photons at
picosecond resolution. To estimate depths, current SPAD-
based 3D cameras measure the round-trip time of a laser
pulse by building a per-pixel histogram of photon times-
tamps. As the spatial and timestamp resolution of SPAD-
based cameras increase, their output data rates far ex-
ceed the capacity of existing data transfer technologies.
One major reason for SPAD’s bandwidth-intensive oper-
ation is the tight coupling that exists between depth reso-
lution and histogram resolution. To weaken this coupling,
we propose compressive single-photon histograms (CSPH).
CSPHs are a per-pixel compressive representation of the
high-resolution histogram, that is built on-the-fly, as each
photon is detected. They are based on a family of linear
coding schemes that can be expressed as a simple matrix
operation. Our results show that a well-designed CSPH can
consistently reduce data rates by 1-2 orders of magnitude
without compromising 3D imaging performance.

1. Introduction

Single-photon cameras (SPC) are an emerging sensor
technology with ultra-high sensitivity down to individual
photons [3, 4]. In addition to their extreme sensitivity,
SPCs based on single-photon avalanche diodes (SPADs)
can also record photon-arrival timestamps with extremely
high (sub-nanosecond) time resolution [19]. Moreover,
SPAD-based SPCs are compatible with the complementary
metal-oxide semiconductor (CMOS) photolithography pro-
cess which can enable fabrication of kilo-to-mega-pixel res-
olution SPAD arrays [5, 18] at low costs. Due to these capa-
bilities, SPAD-based SPCs are gaining popularity in various
imaging applications including 3D imaging [20, 22], low-
light and HDR imaging [1,13,16,21], and more [15,24,25].

Unlike a conventional camera pixel that outputs a single
intensity value integrated over micro-to-millisecond time-
scales, a SPAD pixel generates an electrical pulse for each
photon detection event. A time-to-digital conversion circuit
converts each pulse into a timestamp recording the time-of-
arrival of each photon. Under normal illumination condi-
tions, a SPAD pixel can generate millions of photon times-
tamps per second. The photon timestamps are often cap-
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Figure 1. Compressive Single-Photon 3D Imaging. (a) Example
depth maps with conventional (full histogram) capture, coarse res-
olution capture and our method with compressive capture. In this
simulation, our method generates 100 x lower data, yet generates
depth maps that are visually indistinguishable from the conven-
tional method. (b) With conventional acquisition schemes, data
bandwidth requirements scale linearly with the desired depth res-
olution. Our proposed compressive acquisition does not scale as
strongly with depth resolution, keeping the output data rates man-
ageable with existing data transfer standards like USB and PCle.

tured with respect to a periodic synchronization signal gen-
erated by a pulsed laser source. To make this large volume
of timestamp data more manageable, SPAD-based SPCs
build a timing histogram in-sensor instead of transferring
the raw photon timestamps to the processing chip.

Consider a megapixel SPAD-based 3D camera. For short
range indoor applications, a millimeter depth resolution
would be desirable. For longer range outdoor applications,
centimeter level depth resolution would be desirable. As-
suming state-of-the-art sub-bin processing [12], this corre-
sponds to histograms with thousands of bins. Moreover,
the rate at which these histograms are acquired can vary
from tens of frames per second (fps) to hundreds of fps for,
say, an automotive application with high-speed object mo-
tion. Even a conservative estimate of a 30 fps megapixel
camera leads to a large data-rate of 10° pixels/frame x
1000 bins/pixel x 2 bytes/bin x 30 fps = 60 GB/sec. As
shown in Fig. 1(b), the amount of data generated by this



conventional full histogram capture method varies linearly
with the desired depth resolution and exceeds the bandwidth
of current data-transfer busses by orders of magnitude.

Here we propose a bandwidth-efficient acquisition strat-
egy called compressive single-photon histograms (CSPH).
Instead of capturing the full timing histogram in each pixel,
a CSPH is constructed by mapping the time bins of the
full histogram onto multiple “compressive bins” through an
encoding step. We consider a family of compressive en-
coders that are linear, which means they can be represented
as a simple matrix operation. Therefore, they can be imple-
mented efficiently using vector addition operations that can
be computed on-the-fly, as each photon arrives, without the
need to store large arrays of photon timestamps in-sensor.
CSPHs decouple the dependence of output data rate on the
desired depth resolution. While a full histogram would re-
quire more time bins to achieve higher depth resolution, a
CSPH can represent them using (almost) the same number
of compressive bins. As illustrated in Fig. 1(a), CSPHs can
reduce the required data rate by 1-2 orders of magnitude
compared to the full histogram case.

We design and evaluate various CSPH coding schemes
for SPAD-based 3D cameras. We also evaluate 3D recon-
struction accuracy of our compressive acquisition method
with real-world data from a hardware prototype. Please re-
fer to the full paper for an extensive evaluation that covers
various illumination conditions, scene complexity, noise,
and laser pulse waveforms [10].

2. Single-Photon 3D Image Formation

Single-photon 3D cameras consist of a SPAD sensor and
a periodic pulsed laser that illuminates the scene. Assuming
direct-only reflections, the returning photon flux signal that
will be captured by a SPAD pixel can be written as:

q)(t) = ah(t — tz) + (I)bkg — (I)Sig(t) + q)bkg )

where h(t) is the system’s IRF which accounts for the pulse
waveform and sensor IRF, a represents the returning signal
photon flux, ¢, is a time shift proportional to distance, and
®P%2 corresponds to the background photon flux.

SPAD-based 3D cameras sample ®(¢) using time-
correlated single-photon counting [23]. The SPAD pixel,
once triggered, starts acquiring photons. After detecting
one photon, its timestamp is recorded, and the SPAD is in-
active for a time period called the dead time. As shown
in Fig. 2, this process is repeated for M cycles, and a
histogram of the timestamps is constructed which approx-
imates ®(¢). If the photons are time-tagged with a resolu-
tion, A, the mean photon flux at histogram bin ¢ is:

B; = U + Apbke 2)

The vector, ® = (®;)N ', is the photon flux histogram,
where N = 7/A, and 7 is the timestamp range which
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Figure 2. Single-Photon Histogram Formation. SPAD-based
3D cameras estimate distances by building a per-pixel histogram
of the detected photon’s time-of-arrival.

equals the laser pulse repetition period. Advances in SPAD
operation modes [0, 12] minimize signal distortions and al-
low us to assume that ¢, appropriately approximates ®(t).

The histogram formation process generates a 3D his-
togram image, one histogram per pixel. In emerging
megapixel SPAD arrays with picosecond time resolutions,
building in-pixel histograms, would require transferring the
3D data volume off-sensor for processing leading to imprac-
tical data rates of tens of GB/s. Overall, data bandwidth is
an important challenge for single-photon 3D cameras.

3. Compressive Single-Photon 3D Imaging

In general, we could compress the 3D histogram image
effectively if we had the entire histogram image. However,
building and transferring the histogram image off the sensor
is expensive. Moreover, these histograms are created one
photon at a time, raising the question: Can we compress
the histogram in an online fashion where we see a photon
(and its timing information) only once? This is challenging
because compression schemes often require having access
to the entire data before performing compression.

To answer this question, we make two observations.
First, there is a class of linear compression techniques
which can be expressed as a matrix-vector multiplication.
Specifically, the compressed representation is the product
of a K X N coding matrix, C, and the N x 1 histogram .
An effective C' will have a high compression ratio (N/K),
while preserving 3D imaging performance.

Second, we observe that the entire histogram can be writ-
ten as the sum of one-hot encoding vectors, each vector rep-
resenting one timestamp. Formally, let t; = (¢;;)~ " be
the one-hot encoding vector of the jth timestamp (7)) de-
tected, where all elements are 0 except for ¢;; = 1, where

| = [ 12047 As shown in Fig. 3, ® can be written as:

O; = >t 3)
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Figure 3. On-the-fly Histogram Formation. Timestamp histograms are often built on-the-fly, as each photon is detected. The left column
shows how a histogram, whose bin width matches the timestamp resolution (A), is formed as the sum of timestamps represented as one-hot
encoded vectors. Transferring such a large histogram for every pixel can be impractical. By multiplying each timestamp with a down-
sampling matrix to group timestamps into coarser bins, the size of the histogram can be reduced at the cost of resolution (middle column).
Alternatively, a compressive histogram can be created by multiplying each timestamp with a coding matrix and adding them up as each
timestamp comes in (right column). A well-designed C can efficiently encode the peak location from which distance can be computed.

where M is the total number of detected photons.

Given these observations, we can design an online his-
togram compression algorithm by simply multiplying the
coding matrix with the one-hot encoding timestamp vector:

N—-1 N—-1M-1
Bp =Y Cpi® = Chityi )
=0 i=0 j=0

B is the compressive single-photon histogram (CSPH),
whose elements are coded projections of ®. In practice,
Eq. 4 need not be implemented as a matrix-vector multi-
plication. One possible implementation is to store C' as a
lookup table shared across pixels. For each new ¢; with
t;1 = 1, the I"™ column of C is added to the per-pixel CSPH
(§ =B -+ C. ;). Given this on-the-fly compression method,
a natural question is, what are good coding matrices for
compressive single-photon 3D cameras?

Coding matrix design for 3D imaging has been studied in
the context of correlation-based ToF [8,9, 11, 14] and struc-
tured light [2,7,17]. Based on these works, we defined prop-
erties that C' should have to achieve high compression while
preserving 3D imaging performance (see [10]). Given these
properties, we designed C' using Gray [9] and Fourier [8]
codes.

Results: To evaluate the effectiveness of CSPHs on real
SPAD data we downloaded and pre-processed the data ac-
quired with a scanning-based system [6]. The pre-processed
raw histograms have A = 8ps and N = 832 (e.g., his-
tograms in Fig. 4).

Fig. 4 shows the recovered 3D reconstructions using dif-
ferent CSPH at 104x compression (K = 8). We find that
Gray coding can essentially achieve 0 errors for pixels with
sufficient signal, while sometimes making large errors (out-
liers). In contrast, truncated Fourier and Gray-based Fourier
are robust to outliers, but make many small and medium
sized errors leading to lower quality 3D reconstructions in
this example. Moreover, we found that the background wall
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Figure 4. Real-world Scan-based Single-photon 3D Imaging.
The depth and depth error images for different CSPH with K = 8
codes. The mean and median absolute errors (in mm) achieved by
each method from left to right are: [7, 1], [6, 4], [9, 6], [23, 13].

histograms exhibited a longer tail than the foreground face
histograms due to indirect reflections. Indirect reflections
cause systematic errors in truncated Fourier, while Gray-
based Fourier and Gray coding are more robust to these er-
rors since their C' have higher frequency codes, as predicted
by [8]. Finally, using a conventional coarse histogram with
sub-bin depth estimation leads to the worst performance.

Conclusion: High resolution SPAD-based 3D cameras can
produce unmanageable data rates. To reduce their data
bandwidth, we proposed to capture a compressive represen-
tation (CSPH) of the high-resolution timing histogram. An
appropriately designed CSPH can preserve depth precision
while outputting significantly less data.
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