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Abstract

Current analysis of kidney stones through morpho-
constitutional assessments makes it is possible to estab-
lish treatments to reduce the recurrence of kidney stones
formation, but this process is seen as time-consuming and
prone to errors by expert urologists. Thus, many practi-
tioners have advocated for the introduction of automated
Al-based visual identification methods to be deployed dur-
ing the endoscopic exploration and stone extraction pro-
cess. Such CADx tools could have a tremendous impact
in the urologists workflow, providing immediate insights of
the stone composition, and thus allowing timely hygiene-
dietary advice after the operation. In this paper, we investi-
gate the applicability of deep learning-based computer vi-
sion techniques for automatically classifying kidney stones
for real-time support systems, attaining an average classifi-
cation precision of 97% using Inception v3 in a challenging
dataset comprised of images of four types of stones acquired
in vivo.

1. Introduction

Kidney stones with a diameter of more than a few mil-
limeters cannot usually leave the urinary tract, causing se-
vere pain. During a standard ureteroscopy, kidney stones
are visualized using digital ureteroscopes and broken into
fragments using a laser. These fragments are extracted from
the urinary tract and their biochemical constitution is an-
alyzed to understand the causes (i.e. lithogenesis) lead-
ing to the formation of the kidney stones and to prevent
relapses with appropriate treatment (e.g., diet, drugs [4]).
The class of the extracted kidney stones can be visually rec-
ognized by studying the textures, appearance, and colours

of the surfaces and sections of the fragments using a mi-
croscope. Complementary information about the crys-
talline composition can then be determined using infrared-
spectrophotometry [6].

However, in numerous hospitals, the result of such anal-
yses [2] is usually available a couple of weeks after the pro-
cedure. A recent study [3] has shown that the results of such
visual recognition from endoscopic images by an expert is
strongly correlated with this analysis. A visual in vivo type
recognition in endoscopic images could save precious time
since the fragments can be pulverized and the SPIR analysis
can be avoided. However, most urologists are not trained to
perform this kidney stone type recognition efficiently and
such a task is also strongly operator dependent.

Despite the inherent advantages and potential of Al-
based automated and objective kidney stone recognition
tools, only a few studies have been published in this domain.
Both a classical approach (in [9] a Random Forest classi-
fier exploits histograms of RGB colours and LBP encoding
textures) and a deep learning method [10] have been inves-
tigated, but they obtained rather moderate classification re-
sults (a mean accuracy of 63% and 74% was obtained over
four and five classes for [9] and [10], respectively). The
authors in [ 1] clearly improved the classification results on
five kidney stone types using the ResNet-101 architecture
(the leave-one-out cross-validation led to recall values from
71% up to 94% according to the class). The main limita-
tion of these previous works lies in the fact that the methods
were tested on ex-vivo images obtained in very controlled
acquisition conditions and without endoscopes.

In ureteroscopic in vivo data, the images are affected by
blur, strong illumination changes between acquisitions, as
well as by reflections, whereas the viewpoints are not easy
to optimally adjust.



However, these works have shown the feasibility of au-
tomating kidney stone classification. The aim of this contri-
bution is to assess whether or not CNN-based solutions can
further improve the classification of kidney stones acquired
with ureteroscopes.

2. Material and methods
2.1. Clinical image dataset

The employed dataset includes 177 kidney stone images
which were acquired and annotated by an expert urologist,
Prof. Vincent Estrade. The results of this visual clas-
sification were statistically confirmed by the concordance
study in [3]. The dataset consists of 90 fragment surface
images and 87 fragment cross-section images of the four
kidney stone types with the highest incidence: whewellite
(COM), weddellite (COD), acid uric (AU), and brushite
(BRU). These clinical images were captured using either
the URF-V or URF-V2 endoscopes from Olympus. Images
of this dataset are shown in Fig. 1.

2.2, Patch extraction and data augmentation

As confirmed by the results of previous works [9, 10,
1, 7], image patches with a minimal size enable to cap-
ture enough texture and colour information for classification
purposes. The use of image patches instead of the whole
fragment surfaces and sections allows to increase the size
of the training and test datasets. In order to avoid redun-
dant information, the image areas including kidney stone
fragments were scanned by square patches forming a regu-
lar grid whose neighbouring cells have a maximal overlap
of twenty pixels. However, in previous works, the optimal
size of these patches has not been studied.

The patch size was a hyper-parameter that was adjusted
during the training of the ML models presented in Section
3. The best size value was obtained after several ablation
studies using four patch areas (64x64, 128x128, 256x256,
and 512x512 pixels), by monitoring the precision and loss
curves for each patch size (see Fig. 2).

Figure 1. Examples of in vivo kidney stone images. From the left
to the right: COM (whewellite), COD (weddellite), uric acid and
brushite. Surface and section images are in the upper and lower
line, respectively.

Table 1. Dataset metrics before and after sampling.

Stone type Acquired images Number of
View Class Number  Presence (%) patches

COM 30 31.9 870
COD 32 34.1 920
Surface  Uric Acid 18 19.1 470
Brushite 14 14.9 420

Total 94 100 2680
COM 27 31.0 820
COD 28 32.2 780
Section  Uric Acid 18 20.7 460
Brushite 14 16.1 410

Total 87 100 2470

The best trade-off in terms of accuracy and recall was ob-
tained with patches of 256x256 pixels. This patch size was
used for the results given in Section 3. As shown in Table
1, 2680 surface and 2470 section patches were obtained. As
the number of patches in unbalanced, we performed random
weighted over-sampling with replacement.

Afterward, we performed data augmentation by apply-
ing different combinations of geometrical transformations
to the original patches: flipping, affine transformations, and
perspective distortions increasing the samples from 5,400 to
43,200 (10% were hold out for test purposes).

2.3. Feature extraction and classification

The aim of this paper is notably to compare the deep-
learning methods to the best “classical” classification meth-
ods (i.e., non-DL based approaches). In [7], the feature
vector (based on HSI colour energies and rotation invariant
LBP histograms) was identified as leading to the highest
separability of the kidney stones. Among the tested shal-
low ML methods, Random Forest and XGBoost obtained
the highest precision and recall (see Table 2) for in vivo
kidney-stone images. For these two classical ML methods,
the results given in Section III were obtained by a hyper-
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Figure 2. Ablation study with changing patch sizes.



Table 2. Weighted average metrics comparison for section and sur-
face patches, as well as mixed patches.

Surface Section Mixed
P R P R P R

Random Forest 0.87 082 082 082 091 091
XGboost 093 093 089 089 096 0.96
AlexNet 093 095 083 082 092 092
VGG19 095 096 091 092 094 092
Inception 098 097 094 096 097 098

Classifier

parameter tuning using 10 fold cross-validation (CV), av-
eraging the results over 5 runs (for the non DL models we
used leave-one-out CV due to the low number of samples).

DL architectures (AlexNet, VGG16, and Inception v3)
were adapted for this contribution because theirs feature ex-
tractor backbones are optimal only with large datasets. The
proposed method leverages the benefits of transfer learning
by exploiting CNN backbones pre-trained with ImageNet.
The fully connected (FC) layers of the original backbones
are replaced by a custom FC layer of 25 channels, followed
by a Batch Normalization, a ReLU activation function, an-
other FC layer of 256 channels and a softmax layer with
4 class outputs. These two were randomly initialized, and
connected to a softmax layer for predicting the patch class.
During the training process, the weights in the convolution
layers were fixed and only the FC layers were updated.

For all the reported experiments, we made use of Pytorch
1.7.0 and CUDA 10.1. The learning rates were obtained
using the Pytorch Lightning 1.0.2 optimizer, yielding the
following learning rate values: 0.0001 (AlexNet), 0.00005
(VGG16) and 0.0006 (Inception V3). We used the ADAM
optimizer, a batch size of 64 and early stopping for all the
experiments, whose results are discussed in the next section.

3. Results and discussion

We performed various experiments to assess the ability
of the tested ML models to predict the kidney stone class,
with surface and section patches separately, or mixed, as is
it done in the morpho-constitutional analysis procedure [2].
To do so, all models were trained three times, with i) sec-
tion patches, ii) surface patches, and iii) by mixing the two
patches types. Precision (P) and recall (R) metrics are de-
termined for each class individually.

The results obtained for Random Forest led to very sim-
ilar performances as those reported in [7], showing that the
class balancing compensates the increase of the number of
classes. Moreover, still with respect to [7], an additional
classifier was tested: XGBoost yielded significant results
even comparable to those obtained with the DL-AlexNet
model. In fact, only the Inception v3 model outperforms
XGBoost. This model exhibits the highest average preci-
sion and recall for all classes and patch types.

(a) Mixed surface and section HSI+ LBP features
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Figure 3. Feature visualization using the UMAP for (a) the HSI
and LBP features and (b) the “deep features”.

Table 2 shows that mixing surface and section informa-
tion leads to the best results, whereas the three DL-based
methods exhibit globally the best overall results when ex-
ploiting only surface images (confirming the results of the
concordance study in [3]).

Furthermore, Figure 3(a) provides an UMAP visualiza-
tion [8] which illustrates the class separability achieved us-
ing only the three most discriminant dimensions (umap]1 to
umap3) obtained after the dimensionality reduction of the
HSI-LBP feature space. Fig. 3(b) shows that the same
UMAP dimensionality reduction applied on the “deep fea-
tures” produces tighter clusters and larger inter-class dis-
tances than in Fig.3(a).

4. Conclusions

In this work, we showed that is possible to train ML
models for predicting kidney stone composition from dig-
ital images obtained from ureteroscopes. These results
demonstrate that Al technology can be included in the urol-
ogists” workflow for identifying the causes (lithogenesis) of
the kidney stone formation [5], because precious morpho-
logical information used for diagnosis can be extracted be-
fore proceeding to pulverizing the stone, speeding up pre-
ventive diagnosis measure. Furthermore, this method could
be used to automatically adjust the laser settings during the
ureteroscopy. However, as is previous works, our experi-
ments shall include also other types of stones with mixed
compositions to make it fully usable in clinical settings.
Also, we made use of still images, which might limit the
applicability of the proposed method in real interventions
using video data which can be affected by body movements,
surgical instruments, blood and debris.
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