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Abstract

Determining the scale of relative motion is key to achieve
consistency in monocular motion estimation when trajecto-
ries are recovered up to a scale factor. In this paper, we
introduce a novel method to estimate the relative scale in
monocular visual odometry using a calibrated camera. Our
algorithm exploits redundancy in point depth information
to achieve robust relative scale estimates. The performance
of the method is evaluated in the KITTI public dataset for
autonomous vehicles using the standard KITTI benchmark
metrics. The results demonstrate the effectiveness of a ro-
bust relative scale estimation with 3.06% less drift against
visual odometry without any scale correction, and a total
average translation error of 33.23%.

1. Introduction
Visual odometry (VO) is the process of recovering the

instantaneous position and orientation of a camera from se-
quences of images taken at successive instants [12]. In
monocular visual odometry, a camera is used to estimate
motion and without any knowledge of a reference metric of
the scene under observation, the motion can only be deter-
mined up to a scale, which is known in literature as rela-
tive scale estimation. Estimating the relative scale is instru-
mental towards full autonomy in motion estimation because
estimates of the relative scale can be combined with other
sources of metric information to recover the absolute scale,
for instance, using the camera height, the size of known ob-
jects in scene [13] or inertial sensors such as accelerometers
and gyroscopes [10]. The specialized literature can be orga-
nized in two main groups: Direct methods and Sensor fusion
methods. The direct methods use the information of a cam-
era, while the sensor fusion methods merge visual content
with other sources (e.g. stereo camera, inertial data, spa-
tial metrics, non-holonomic constraints). We will limit our
analysis to direct methods that aim to exploit purely monoc-
ular information.

Regarding direct methods, in [7] it was derived a batch

estimation method that requires a set of m image frames
with n 2–D points and the depth of the first point is used as
reference for determining the relative scale. In [4], the au-
thors used the trifocal tensor determined by groups of three
related images. This method is analogous to the work of [7]
for the case m = 3 images, however, it only requires point
correspondences from three views. In [12], the authors ex-
pressed the relative scale as the mean of the distance ratio
between pairs of triangulated points expressed in 3–D coor-
dinates. Although several relative scale estimation mecha-
nisms have been proposed in literature, such methods do not
make use of redundant information given in the keypoint
depths (direct methods), or rather use external information
with sophisticated formulations (sensor fusion methods).

In this work, we provide an analytical solution for rel-
ative scale estimation based on a novel three-view triangu-
lation algorithm. The proposed methodology uses a cal-
ibrated camera to derive a robust method for determining
the relative scale by exploiting repeated observations of a
1–D parameter (the keypoint depth) rather than using full
3-D keypoint coordinates as in previous literature. The pro-
posed algorithm is modular and can operate as a building
block in other perception-oriented methodologies (e.g. vi-
sual SLAM). The performance of the algorithm is demon-
strated on the KITTI dataset for autonomous vehicles [2].

2. Methodology

For a given point p in the 3-D space, we denote its
representation in the world reference frame w by Xw =
[xw, yw, zw]T , in the camera reference frame c by Xc =
[xc, yc, zc]T , its perspective projection in normalized cam-
era coordinates by x = [xc/zc, yc/zc, 1]T and in image
coordinates by x̂ = [u, v, 1]T . The relation of a 3-D point
in the world with its 2-D projection on the image plane us-
ing the pinhole camera model in homogeneous coordinates
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is given by [14]
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where K is the camera calibration matrix, Rcw ∈ R3×3 is
the rotation from world to camera coordinates, and tcw ∈
R3 is the translation of the world origin with respect to the
camera. Hence, monocular visual odometry obeys the rela-
tion

x̂ ∼ CXw, (2)

where C = K[Rcw|tcw] is the camera projection matrix and
∼ indicates equality up to a scale factor given by the key-
point depth zc ∈ R+.

A point p has coordinates Xc
k−1 and Xc

k relative to a
pair of consecutive camera frames, which are related by the
rigid-body transformation

Xc
k = RkX

c
k−1 + tk, (3)

where the rotation Rk and translation tk are the extrinsic
parameters of camera motion. Those parameters can be es-
timated using well-established methods [7, 9]. However, the
estimated motion may lead to inconsistent relative scales
between frames since the keypoints involved in the calcula-
tions might be different. Hence, the computing the relative
scale of the translation vector allows for consistent motion
estimates when new views are incorporated into the scene.

2.1. Relative scale estimation

Fig. 1 depicts our procedure to estimate the relative
scale. The relative scale of translation at frame instant
k, denoted λ?k, is estimated as the ratio of the depths zc

of a single 3-D point Xc
k−1 = [xck−1, y

c
k−1, z

c
k−1]

T and
Xc′

k−1 = [xc
′

k−1, y
c′

k−1, z
c′

k−1]
T triangulated at instant k − 1

from consecutive pairs of camera views. Firstly, the rela-
tive motion from three camera views is recovered by de-
composition of the essential matrices relative to a pair of
consecutive views. Specifically, relative motion parameters
(Rk−1, t̂k−1) are recovered from the frames {k− 2, k− 1}
by decomposition of the essential matrix Ek−1 and (Rk, t̂k)
are recovered from the frames {k− 1, k} by decomposition
of the essential matrix Ek.

Secondly, the depths of the 3-D points Xc
k−1 and Xc′

k−1
are calculated by triangulation using the parameters of rela-
tive motion calculated previously. Particularly, depth zck−1,
corresponding to the former point, is recovered by triangu-
lation using the frames {k − 2, k − 1} and the depth zc

′

k−1,
corresponding to latter point, is recovered by triangulation

Figure 1: Relative scale estimation in monocular odometry.
The striped lines in blue represent triangulation at instants
{k − 2, k − 1}. The striped lines in gray represent triangu-
lation at instants {k − 1, k}. The relative scale λ?k is given
by the ratio of depths from points Xc′

k−1 and Xc
k−1. The

magnitude of the translation vector at the current frame k is
scaled according to λ?kt and represented by the striped lines
in red.
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A key step in our method is the fact that vectors Xc
k−1

and Xc′

k−1 refer to the same point at instant k−1 and, there-
fore, the estimated depths zck−1 and zc

′

k−1 are equal up to a
relative scale factor since different keypoints might be in-
volved in their computations. Thirdly, the estimated relative
scale λk is given by the ratio of depths at frame k − 1

λk =
zck−1
zc

′
k−1

. (5)

By exploiting redundancy in depth information, we de-
rived an optimal relative scale, denoted λ?k, as a least
squares solution of (5) for three-view scenes with n cor-
responding keypoints, where n ∈ N

λ?k =
Z

′T
k−1Zk−1

‖Z ′
k−1‖

2 , (6)

where Z
′

k−1 and Zk−1 are vectors in Rn of the estimated
keypoint depths, defined by

Z
′

k−1 = [zc
′

k−1,1, z
c′

k−1,2, . . . , z
c′

k−1,n]
T , (7a)

Zk−1 = [zck−1,1, z
c
k−1,2, . . . , z

c
k−1,n]

T . (7b)
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Finally, the translation vector is scaled up accordingly

t̂k = λ?k t̂k . (8)

2.2. Experimental setup

The performance of our method is evaluated on the
KITTI dataset. The vehicle navigates in an outdoors en-
vironment characterized by a mostly static scene with the
presence of natural features of an urban landscape, e.g.
trees, cars, buildings. The coordinates of the reconstructed
trajectory are expressed in a global reference frame with
the origin centered in first camera frame. Keypoint extrac-
tion and keypoint tracking are implemented using the FAST
descriptor [11] and the Lucas-Kanade tracker (LK-tracker)
[6]. The extrinsic parameters are calculated using the 5-
point algorithm [9] and the 3-D reconstruction is calculated
by triangulation as in [5].

3. Results
The evaluation of our algorithm in the standard KITTI

dataset is shown in Table 1. The translational and rotational
errors are calculated using the KITTI benchmarks, which
are based on the average of different trajectory lengths at
(100m, 200m, . . . , 800m). The errors are measured in
percent (%) for translation (t) and in degrees per meter
(deg /m) for rotation (R). The total average error was
33.23% for translation and 0.0006 deg /m for rotation. The
results showed accurate scale estimates in scenarios with
initial forward motion of the vehicle (sequences 00, 02, 03,
04, 05, 06, and 08). The algorithm is more susceptible when
the initial motion corresponds to more challenging maneu-
vers as in turns (sequences starting with an initial rotation,
e.g. 01, 07, 09, and 10). This may be associated with a
faster loose of keypoint tracking during fast rotations in the
initialization with a corresponding affectation on the esti-
mated motion parameters and, consequently, poor relative
scale estimates.

4. Analysis
The family of batch methods, which are based on [7],

use m-view reconstruction, which may lead to poor rel-
ative scales (estimates depend on the number of matched
points and such number decreases with m > 2). In con-
trast, we proposed a sequential estimation from pairs of
camera frames (2-view reconstruction) and such approach
imposes only two bilinear constraints per iteration aiming
for increased robustness against data noise.

Compared to the more similar family of online methods,
which are based on [12], both algorithms are asymptotically
equal since they have linear complexity. However, for a
sufficiently large number of points, our solution requires 20

Table 1: Relative scale estimation results on KITTI
datasets. Errors are measured using trajectory segments at
100m, 200m, . . . , 800m, as an average of segment lengths
(%).

ID L (m) Environment t (%) R (deg /m)

00 3714 Urban 17.03 0.0007
01 4268 Highway 64.15 0.0004
02 5075 Urban+Country 35.92 0.0006
03 563 Country 28.99 0.0003
04 397 Country 5.62 0.0001
05 2223 Urban 18.97 0.0004
06 1239 Urban 7.75 0.0002
07 695 Urban 43.86 0.0006
08 3225 Urban+Country 19.39 0.0006
09 1717 Urban+Country 54.00 0.0005
10 919 Urban+Country 69.86 0.0008

times less operations per iteration (1-D depths against full
3-D vectors) and such result might be relevant in platforms
with limited computational resources for online processing.

Our algorithm achieved 3.06% less drift against visual
odometry without any scale correction and 33.23% on aver-
age translational error in the KITTI ranking against state-of-
the art results of up to 21.47% [3]. Unlike current monoc-
ular VO approaches reported in [3], our proposal is inde-
pendent of hard prerequisites, such as external informa-
tion (machine learning), additional sensors (stereo vision,
sensor fusion), offline processing (pose-refinement, batch-
processing), or any combination of them. This may explain
the difference in accuracy, but in contrast, our method can
be easily incorporated in any other monocular VO approach
to further improve the estimated odometry.

The performance of our relative scale estimation algo-
rithm on 1 core@2.3 GHz (Python) was 0.2453 seconds per
iteration. Considering this, we argue that the average run-
time is within the top 10 rank of the fastest methods [3].

5. Conclusion

We proposed a novel method for estimating the relative
scale in monocular visual odometry using a calibrated cam-
era. By introducing robust relative scales, we achieved near
state-of-the art results in the KITTI ranking (33.23% of av-
erage translation error). The robust relative scale estimates
were obtained by exploiting redundancy in depth informa-
tion of points in the scene, which was shown to be key in re-
ducing the odometry drift. Our method can be implemented
in other related perception-oriented approaches, such as the
visual SLAM, and is feasible of real-time implementation.
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