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Abstract

Monocular visual odometry is an effective motion esti-
mation technique that requires to solve for the challenging
problem of absolute (metric) scale estimation. Current ap-
proaches use information such as the camera height or size
of known objects to estimate the scene scale. In this paper,
we propose a novel prediction-correction method to esti-
mate the absolute scale of motion using camera height and
flat ground assumption. Prediction is provided by a robust
relative scale estimation strategy that exploits redundancy
in depth information. Correction implements ground patch
correlation using subpixel search refinement. The proposed
method is tested using the public KITTI benchmark. As re-
sult, we derive analytical expressions to determine the abso-
lute scale using a monocular camera. The empirical results
shows the effectiveness of the proposed absolute scale es-
timation strategy in reducing the scale drift in monocular
visual odometry.

1. Introduction
Visual odometry (VO) uses cameras as perception sen-

sors for motion estimation which have important character-
istics such as low cost hardware and rich source of informa-
tion contained in camera images (color, semantic content
and geometry). Recent applications have been enabled due
to recent advances in this field, such as augmented reality,
aerial navigation and autonomous vehicles. The automo-
tive industry has particularly driven research and develop-
ment on visual odometry methods due to is capability of
delivering commercial products for autonomous driving ap-
plications. In this context, the methods made use of the
particular characteristics of the environment for automotive
vehicle navigation, such as landscape features and object
detection (pedestrians, cars, trees), physical mounting con-
straints (fixed camera installation), lane lines and road fea-
tures and signs. There is a number of publicly available
datasets that provide benchmark data for the evaluation of
visual odometry algorithms. Among all, the KITTI dataset

is currently one of the most popular datasets due to the ref-
erence metrics they provide in open access to enable quanti-
tative comparison of results. Regarding the camera configu-
ration, the two main approaches use stereo camera or single
monocular camera. Stereo configurations provide motion
estimates with absolute scale as the transformation between
cameras is known, but they require extra processing effort
to compute the information of an additional camera. In con-
trast, odometry based on monocular camera, which has been
argued to be a more challenging problem [7], has demon-
strated similar efficiency to the stereo case [8]. Estimating
the absolute scale of motion is a key challenge in moncular
odometry methods.

Several strategies addressing absolute scale estimation in
monocular odometry are reported in literature. We report a
short summary of the methods with reported results on the
KITTI dataset for the sake of comparison using a publicly
available benchmark. The methods can be classified in three
main categories.

Multi-sensor methods use heterogeneous sensors such
as inertial, cameras or lidars. In [6], it was developed a
general SLAM system called ORB-SLAM2 for monocular,
stereo and RGB-D cameras including features such as map
reuse, loop closing and relocalization. Motion estimation is
provided by bundle adjustment using stereo observations to
retrieve the absolute scale. The system achieved real-time
operation in a variety of different environments (indoors,
outdoors) with 1.15% of MRPE error on KITTI dataset.

Camera mounting methods use physical parameters of
the sensor system as sources of metric information. In [5],
it were used monocular techniques such as the 5-point al-
gorithm for estimating camera motion. The camera height
is used to track low quality features on the ground plane
with a robust approach. They achieved 2.24% of relative
translation error in the KITTI dataset.

Learning based methods use artificial intelligence
pipelines. In [9], it was used deep learning to predict point
depths of monocular vision. The method applies a su-
pervised training stage that based on sparse depth recon-
struction from stereo images using direct sparse odome-
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try (DSO). In the training step, depth reconstruction apply-
ing DSO to stereo images is used to predict the monocu-
lar depths. It was obtained a comparable performance to
stereo methods on KITTI dataset using a single camera with
0.90% of translation error.

The monocular visual odometry system we propose uses
camera height information and flat ground assumptions
only. We provide a procedure that can be generalized to
ground odometry scenarios whenever former two condi-
tions are fulfilled. Compared to related methods based on
camera height, we developed a prediction-correction mech-
anism to determine the absolute scale using a robust relative
scale estimation step that exploits redundancy of keypoint
depth information. We also derive an analytical expression
to determine the absolute scale from reconstructed depths
of 3-D points located on the ground.

2. Methodology
We proposed a two-step prediction-correction strategy

based on the following assumptions:

1. Relative scale estimation (prediction): Unstructured
outdoor environment. Motion estimation of a monoc-
ular camera is recovered by processing natural visual
features present on the environment up to a relative
scale and unknown absolute scale factor. Motion es-
timates are rotationR and translation t.

2. Absolute scale estimation (correction): Camera is
mounted rigidly at a known height; the ground floor
is assumed flat in the local neighborhood closest to the
camera field of view. We made use of the specific con-
straints of the system such as the parameters of camera
mounting (height and orientation) and the flat ground
assumption in order to determine the absolute scale of
camera motion.

2.1. Scale detection mechanism

The calculation of the absolute scale of the translation
uses camera height and ground plane information by assum-
ing a flat world. Fig. 1 depicts a camera mounted at a height
h and orientationRm in forward looking position (pointing
towards the direction of forward motion). The coordinate
systems are denoted w for the world frame and ck for the
camera frame at instant k. The ground plane is represented
by a point in the ground Pw

g .
With the information of the camera height and orienta-

tion it is possible to recover the absolute scale of translation
by relating a point in the ground in two subsequent images
and solving for the 3-D structure using the planar geometry
assumption. We first choose a patch on the ground plane by
defining a region of interest (ROI), which is a small square
image of the ground. Backtracking is then performed which

  
Figure 1: Forward looking camera mounted rigidly on the
vehicle. The camera mounting parameters are the camera
height tm = [0, 0, h]T and the camera orientation Rm.
Part of the ground plane lies within the field of view of
the camera (note the point on the ground of coordinates
Pw

g = [xw, yw, 0]T ) which is valuable information to cor-
rect for the absolute scale of translational motion using the
plane homography method.

consists of finding the ROI image correspondence in the im-
age of a previous instant using the information of the rela-
tive scale. Backtracking provides a prediction of the pos-
sible ROI position in the image. The ROI position is later
refined by searching for the best patch correlation within a
local pixel neighborhood. The region of maximum corre-
lation is used as the ROI correspondence. The 3-D depths
of the two ROI correspondences is calculated from the ho-
mography relation defined using the road plane assumption.
Finally, the absolute magnitude of the translation vector is
recover by triangulation.

2.2. Absolute scale estimation

The translation vector is expressed in terms of a scale
parameter and a unit vector

tk = λt̂k , (1a)

t̂k =
tk
‖tk‖

. (1b)

Now we can derived an expression for the absolute scale,
denoted λ, by relating a reconstructed 3-D point in the
ground from consecutive camera frames ck−1 and ck, such
as

P ck−1
g = RT

kP
ck
g + tk , (2a)

P ck−1
g = RT

kP
ck
g + λt̂k , (2b)

λ = t̂Tk (P
ck−1
g −RT

kP
ck
g ) . (2c)

Note that given motion parametersRk and t̂k are estimated
from visual odometry using the relative scale estimation al-
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Algorithm 1 Absolute scale estimation using plane homog-
raphy.
Given the position of the ROI center at current instant
k.

1: Calculate the predicted position of ROI at instant k −
1 (backtracking) using the information of the relative
scale.

2: Correct the predicted ROI position by finding the patch
of maximum correlation on a local patch neighborhood.

3: Recover the depths and 3-D coordinates of the point in
the ground at the two instants k − 1 and k.

4: Estimate the absolute scale of the translation from (2).

gorithm, as explained previously (see Fig. 1). The proce-
dure is summarized in Algorithm 1.

3. Results

The results of Table 1 show the absolute scale estimation
results using the KITTI evaluation benchmark. The envi-
ronment included urban, highway, and countryside scenes
of different lengths (L). The KITTI evaluation metrics mea-
sure the average translation (t) and rotation (R) errors by
separate as a function of the trajectory length and veloc-
ity to provide means for error control over time [3], and
are standard metrics for the evaluation of visual odomery
algorithms [2]. The translational and rotational errors are
calculated using the average of different trajectory lengths
at (100m, 200m, . . . , 800m), where errors are measured in
percent for translation and in degrees per meter for rotation.
The results show proper estimated trajectories with average
translation error below 16% for 6 out of 10 sequences (00,
02, 03, 04, 05, 06, 08). This sequences are characterized
by an initial forward motion with sufficient parallax (large
baseline) that enables an accurate initial absolute scale. The
sequences 00, 02, 06 and 08 are characterized by more ag-
gressive curves on rotations. The absolute scale corrects for
motion estimates even in the presence of several rotations.

3.1. Computational complexity

Performance tests were calculated using sequence 00 as
reference. The average computational time per iteration of
our absolute scale estimation algorithm for a Python imple-
mentation run on a 2.3 GHz Intel Core i5-6200U proces-
sor was 2.3553 seconds. Note that our ROI correspondence
mechanism has not been optimized for computational speed
and current implementation takes an average of 1.9858 sec-
onds per iteration which is about 84% of the total compu-
tation time. The average performance of the relative scale
estimation algorithm was 0.2453 seconds per iteration.

Optimization steps can be taken in order to speed up

Table 1: Absolute scale estimation results on KITTI
datasets. Errors are measured using trajectory segments at
100m, 200m, . . . , 800m, as an average of segment lengths
%.

ID L (m) Environment t (%) R (deg /m)

00 3714 Urban 11.72 0.0007
01 4268 Highway 79.00 0.0003
02 5075 Urban+Country 15.73 0.0006
03 563 Country 15.80 0.0003
04 397 Country 2.70 0.0001
05 2223 Urban 10.46 0.0004
06 1239 Urban 4.60 0.0002
07 695 Urban 37.24 0.0006
08 3225 Urban+Country 12.24 0.0006
09 1717 Urban+Country 43.93 0.0005
10 919 Urban+Country 61.86 0.0008

the current implementation. For instance, using a dedicated
processor for computing ROI correspondence (e.g., ASIC,
FPGA, GPU). In this sense, our method is prone of such
hardware optimization due to its modular design and, there-
fore, real-time implementations are feasible.

4. Analysis
Our visual odometry approach was to push the limits

of using a single camera with a minimum set of assump-
tions and prerequisites (no learning, extra sensors or of-
fline processing were introduced). Our algorithm achieved
20.08% on average translational error in the KITTI rank-
ing against state-of-the art results of up to 21.47% [2].
Compared to related monocular approaches reported in [2],
in [1] it was achieved 2.05% on average translational er-
ror, and [5] obtained 2.24%. The main difference is that
those methods are based on sources of external informa-
tion, such as experienced-based (machine learning), extra
sensors (lidar, inercial, stereo camera), offline processing
(pose-refinement, batch-processing), or any combination of
them. This may explain the difference in accuracy.

5. Conclusion
We have developed a novel absolute scale estimation

algorithm for monocular visual odometry using the cam-
era height information and the flat ground assumption.
An analytical expression for the absolute scale of transla-
tion is derived based on a fixed camera height. The pro-
posed algorithm achieved state-of-the-art ranking in KITTI
dataset with an average error of 20.08% for translation and
0.0006 deg /m for rotation. For future work, a velocity
analysis mechanism can be used to overcome wrong scale
estimates in small baseline motion.
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