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Abstract

Underwater robot interventions require high levels of
safety and reliability, specially when used for human-robot
collaboration missions. For this reason, we propose a ro-
bust gesture-based communication pipeline for an AUV to
assist divers in their missions, which provides feedback in
every step of the process to ensure valid operations. In this
work, we prove that such human-in-the-loop system is still
necessary despite the recent success of deep learning vi-
sion models because of the difficulty to predict the amount of
data that will be available for training and how representa-
tive of the actual environment it will be. We highlight these
issues by replaying the development of the EU-FP7 CADDY
project and testing the performance of several state-of-the-
art methods with the historically available data at each de-
velopment stage. These methods include both classical ma-
chine learning and deep learning frameworks. We can gain
insights into which DL architectures are more robust to high
intra-class variations or smaller datasets for underwater
image applications. Further work will consider image dis-
tortions based on the light behavior underwater.

1. Introduction

In the past decade, there have been significant research
efforts to boost Autonomous Underwater Vehicle (AUV)
capabilities that are essential for inspection and intervention
tasks in different application domains including industrial,
oceanographic, archaeological and environmental scenar-
ios. But the level of autonomy required to perform safe and
reliable missions involving for example dexterous manipu-
lation, cautious biological sampling, or exhaustive environ-
ment exploration in a fully unsupervised manner is not yet
persistently available and still a matter of research. Hence,
human intervention by divers or tele-operation of a system
is often necessary. Nevertheless, human divers can profit
from AUV assisting and monitoring, i.e., there is ample po-
tential for underwater human-robot collaboration. To this

Figure 1: The CADDY system for assistance in diver missions. (Right) The Buddy-
AUV equipped with a Blueprint Subsea X150 USBL, a Underwater Tablet, a Bum-
bleBeeXB3 Stereo Camera, and an ARIS 3000 Imaging Sonar for diver tracking,
monitoring and communication. (Top) Diver gesturing a command. (Bottom) Aerial
view of the system with PladyPos surface vehicle for global positioning.

end, we present work on a robust gesture-based communi-
cation pipeline for an AUV to assist divers in missions.

In order to achieve high performance levels and to
meet safety-critical standards, a system comprised of two
robot “companions” – an Autonomous Underwater Vehi-
cle (AUV) and an Autonomous Surface Vehicle (ASV) –
was proposed in the EU-CADDY FP7 project (Cognitive
Autonomous Diving Buddy) to both monitor and support
divers operations (http://www.caddy-fp7.eu/).
To achieve safety-critical standards, an AUV called Buddy
constantly tracks the diver through a sonar and a stereo cam-
era. The AUV also receives updates about the diver’s health,
position, heart-rate, breathing and IMU sensors through
acoustic modems. This information is parsed and broad-
casted to the ASV called PlaDyPos, which relays the data to
an offshore vessel or an onshore control center (see Fig. 1).

We focus on the gesture-based communication pipeline
used by the divers to instruct the AUV to assist with a par-
ticular task or in an emergency. The gesture language syn-
tax and grammar, named Caddian [2][3], was specifically
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developed to enable a wide variety of tasks and quick mes-
sage correction. Each hand signal is detected and classified
based on the stereo camera input. We augment the work
done by Chiarella [3] by adding an underwater tablet on the
AUV that provides feedback to the divers (see Figure 1).
Based on this, the divers can adapt on the fly, e.g., reconfig-
ure mission parameters, abort current tasks or ask for help.

The EU-FP7 CADDY project was developed from 2014
to 2017, under which a series of field data collections
and tests were performed to gradually design, benchmark
and improve diver gesture classifiers and generate a large
dataset [5]. In this article, we examine how a classical Ma-
chine Learning (ML) approach to gesture recognition per-
forms in comparison to state-of-the-art deep learning (DL)
methods and how different DL architectures perform com-
pared to each other, by replaying the CADDY development
cycle. This means that we evaluate the performance of each
method based on the available data at different dates and
from different field experiments, which effectively impacts
the data size and the environmental conditions it represents.
Given the challenges of the highly variant underwater image
formation and the logistical difficulties of acquiring massive
amounts of labeled and representative data in this environ-
ment, the results are also of interest for underwater object
detection and classification in general. The results justify
the creation of a system with a human-in-the-loop module.

2. Hand gesture detection and classification

2.1. Classical ML approach

At the time of the first CADDY design (2014), deep
learning methods for object perception were just starting to
be competitive against methods based on engineered fea-
tures like SIFT, SURF, histogram of gradients (HoG), etc.
Likewise, depth calculation from stereo data was primar-
ily done through feature matching and further optimization
procedures. Accordingly, our proposed approach to hand
detection is a hybrid approach combining both 3D informa-
tion through disparity maps and cascade classifiers to en-
sure robustness against different forms of underwater im-
age degradations. Segmentation of the disparity maps based
on distance and pixel density offers quite reliable hand de-
tection. However, it fails in the presence of bubbles from
and other texture-prominent areas. Thus, 2D cascade clas-
sifiers [10] are used to filter these false positive regions.

All of the region proposals are used as input to a final
classifier in form of a Multi-Descriptor Nearest Class Mean
Forests (MD-NCMFs), which is first introduced for diver
localization in [1]. This classifier filters out false positives
generated by the previous modules and maps the true pos-
itives (hands) to a specific gesture (class) within the Cad-
dian language. The main purpose of this variant of a Ran-
dom Forest is to aggregate multiple engineered descriptors

(SIFT, SURF, ORB, HoG, etc.) that encode different rep-
resentations of objects, each of them ideally robust against
different distortions. The methodology is shown in Fig. 2.

2.2. Deep learning approach

State-of-the-art deep learning models for visual ob-
ject detection and classification often follow three meta-
architectures: Single Shot Detector (SSD) [8], Faster
Region-based Convolutional Neural Network (Faster R-
CNN) [9], and Region-based Fully Convolutional Neu-
ral Network (R-FCN). SSD models offer fast computation
speeds since they perform object detection and classifica-
tion in one single pass of the network. Hence, they are of-
ten the preferred choice for embedded systems. Faster R-
CNN has two stages, procedurally similar to the described
classical ML approach (see Sec. 2.1): a region proposal net-
work generates candidates for object regions and a classifier
verifies each of them. Finally, the R-FCN architecture is a
compromise between the previous ones as it shares learned
features in the initial layers between the region proposal and
the classifier network. Based on this and to test the robust-
ness of different deep learning architectures from the litera-
ture, we consider here the following four:

Visual model Feature
extractor

Software
Library

References

FCN-CNN ResNet-50 Fast.ai/Pytorch [6]
SSD MobileNets Tensorflow [8, 7]
Faster R-CNN ResNet-101 Tensorflow [9, 6]
Deformable Faster R-CNN [4] MXNet [9, 4]

Table 1: The evaluated Deep Learning models with pre-trained feature extractors.

3. Experiments and results

3.1. Dataset and setup

The recording of underwater gestures took place in three
different locations in the open sea as well as in indoor and
outdoor pools, respectively in Biograd na Moru (Croatia),
the Brodarski Institute (Croatia) and in Genova (Italy). The
collected data is divided into 8 scenarios representing differ-
ent diver missions, locations and field experiments. Scenar-
ios named Biograd-A, Biograd-B, and Genova-A represent
trials organized mainly for data collection; they hence con-
tain a high number of samples. The rest of the data was col-
lected during test experiments of real diver missions, such
as Biograd-C and Brodarski-A to Brodarski-D. For a de-
tailed explanation of the number of samples in each scenario
and their environmental conditions, please refer to [5].

Note that the quantity and quality of the data from one
scenario might not be representative enough to make an un-
derwater vision system robust enough to be used “off-the-
shelf”. To illustrate this, the variations in image quality

2
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Figure 2: Hand detection. In parallel (I.a) a Haar cascade model proposes possible image regions for the hand, while (II.b) a disparity map is computed, thresholded by distance
and morphologically transformed to reduce noise, to propose more regions. (I.c) A cross-check between these methods generates the final hand image candidates. Gesture
classification. A Multi-Descriptor NCM tree (MD-NCM) is used; each class centroid – colored dot – traverses a path through the decision tree. (II.a) The image is encoded into
different types of feature vectors ~x ~y ~z, (II.b) the sample passes down the tree following the closest centroid (aggregated similarity measure). For example, e0r in the first level,
and (II.c) when it reaches a leaf, the image is assigned a class distribution, when is computed when trained.

for the different scenarios are shown in Fig. 3, reprinted
from [5]. Therefore, for each method described in Sec. 2,
we train not just one but four classifiers on four different
train/valid/test set partitions of the data as described in Ta-
ble 2. Scenario F uses the complete (Full) dataset.

Figure 3: Image quality assessment in the dataset based on the MDM metric [5].

Part. A Part. B Part. C Part. F

Training Sets Biograd
A,B

Genova A Brodarski
A,C

All
scenarios

Samples mean* 338 415 222 1156
Samples median* 151 294 206 792

Table 2: Training set partitioning based on recording scenarios. *Per class samples.

3.2. Performance evaluation

We evaluate each of the ML/DL models trained accord-
ing to Table 2. The results based on accuracy are shown
in Table 3 and 4. Deformable Faster R-CNN and Faster
R-CNN have the lead when the complete dataset is used
(Model-F), followed by FC-CNN still having an accuracy
of 95%. This is an indication that with enough amount and
diversity of the data, direct classifiers offer top performance,
which can save efforts and time dedicated to manually seg-
menting object regions in the images. SSD MobileNet has a

better performance than the classical machine learning ap-
proach, but it drops below 90%. However, SSD is known
for its superior speed and its suitability for embedded sys-
tems. MD-NCMF, a classical ML method, comes in last
with an accuracy below 80%.

As for the Models A to C, trained with data belonging
to specific scenarios, Table 2 shows that the performance
changes drastically compared to models trained on the full
dataset and we can draw the following conclusions:

1) In general, Deformable and standard Faster R-CNN
still have the lead (except for Model B), but MD-NCMF
offers competitive results and it outperforms FC-CNN and
SSD MobileNets. Thus, with lack of data, deep visual mod-
els suffer a greater performance drop, ≈ 40%, while MD-
NCMF accuracy drops only by ≈ 20%.

2) For Model B versions, MD-NCMF does better than
the other classifiers. A rigorous explanation would require
a careful examination of the data including a visualization
of the features learned from each of the layers of each deep
convolutional model (future work). But we can reasonably
postulate that data used to train Model B, i.e., from the
Genova-A scenario, is not diverse enough for the convo-
lutional models to learn robust features despite Genova-A
having more samples per class than Model A and C (see
Table 2), and that some of the human-engineered features
used for MD-NCMF are more representative.

3) Classical models present more ”predictable” perfor-
mance across the test sets. DL models have strong perfor-
mance drops for particular tests, e.g., see FC-CNN Model
B tested against the Brodarski-B test set. A possible ex-
planation for this is again the very different nature of the
images and the features computed from the training set in
comparison to those from the test set. For example, Model
B (trained on the Genova-A scenario) and the Brodarski-
B samples differ substantially in brightness, color tone and
amount of noise (see Fig. 3).

In future work, our goal is to use image quality metrics as
predictors of performance and select the best deep learning
architecture accordingly, as well as generating more realis-
tic samples based on the light formation model underwater.

3
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MD-NCMF FC-CNN w/ ResNet-50
Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F

Biograd-A 0 0 0.72 0.52 0.81 0 0 0.42 0.5 0.99
Biograd-B 0 0 0.71 0.51 0.84 0 0 0.21 0.51 0.99
Biograd-C 0.74 0.75 0.68 0.85 0.53 0.45 0.51 0.97

Brodarski-A 0.76 0.76 0 0 0.78 0.52 0.24 0 0 0.95
Brodarski-B 0.81 0.79 0.71 0.73 0.63 0.12 0.68 0.86
Brodarski-C 0.7 0.65 0 0 0.77 0.57 0.48 0 0 0.98
Brodarski-D 0.69 0.61 0.55 0.71 0.71 0.48 0.53 1

Genova-A 0.52 0 0 0.48 0.69 0.34 0 0 0.24 0.89
All scenarios 0.56 0.64 0.46 0.77 0.45 0.36 0.43 0.95

Table 3: Visual models accuracy (0 1) performance on all scenarios, based on Table 2.

SSD w/ MobileNets Faster R-CNN w/ Resnet 101 Deformable Faster R-CNN
Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F Mod-A Mod-B Mod-C Mod-F

Biograd-A 0 0 0.35 0.38 0.84 0 0 0.63 0.65 0.99 0 0 0.65 0.64 0.99
Biograd-B 0 0 0.29 0.44 0.88 0 0 0.51 0.71 0.99 0 0 0.54 0.7 1
Biograd-C 0.36 0.31 0.4 0.82 0.74 0.58 0.67 0.98 0.74 0.57 0.67 0.98

Brodarski-A 0.38 0.3 0 0 0.87 0.72 0.48 0 0 0.97 0.73 0.49 0 0 0.97
Brodarski-B 0.33 0.29 0.48 0.84 0.72 0.52 0.85 0.96 0.74 0.5 0.87 0.97
Brodarski-C 0.32 0.28 0 0 0.86 0.79 0.56 0 0 0.99 0.78 0.6 0 0 0.99
Brodarski-D 0.29 0.26 0.36 0.79 0.82 0.55 0.68 0.99 0.84 0.54 0.72 0.99

Genova-A 0.25 0 0 0.23 0.75 0.69 0 0 0.44 0.94 0.66 0 0 0.41 0.96
All scenarios 0.28 0.361 0.29 0.85 0.59 0.49 0.52 0.98 0.61 0.5 0.53 0.98

Table 4: Visual models accuracy (0 1) performance on all scenarios, based on Table 2 – continuation.
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