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México

a01166339@itesm.mx

Miguel Gonzalez-Mendoza
Tecnologico de Monterrey
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Abstract

Activity Recognition and Classification in video se-
quences is an area of research that has received attention
recently. However, video processing is computationally ex-
pensive, and its advances have not been as extraordinary
compared to those of Image Captioning. This work, cre-
ated by Latinx individuals from Mexico, uses a computa-
tionally limited environment and transforms the Video Cap-
tioning dataset of ActivityNet into an Image Captioning.
Generating features with Bottom-Up attention and train-
ing an OSCAR Image Captioning model, and using different
NLP Data Augmentation techniques, we show a viable and
promising approach to simplify the Video Captioning task.

1. Introduction
Activity Recognition and Classification in video se-

quences is a Vision and Language task (V+L) that has
caught attention in the past years. Its applications are vast
and range from security surveillance [2] to Visual Question
Answering (VQA).

Video processing is computationally expensive, and the
search for more efficient methods and models requires new
ideas. The available Video datasets are not as vast as those
of Image Captioning, and working with them requires the
researcher to have significant computational resources at
hand. The present work explores an approach to solving
these problems: eliminate the temporal dimension and at-
tempt to tackle the Video Captioning task as an Image Cap-
tioning one.

Recent projects on Image Captioning [1, 12] have made
massive progress towards faster training times [26], more
accurate features, and pre-trained models that can be fine-
tuned for specific V+L tasks. Transforming the ActivityNet
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[6] video dataset to an Image Captioning dataset, generating
image features with Bottom-Up attention [1] and training an
Image Captioning model using OSCAR [12], we show that
it is possible to generate accurate descriptions from single
frames of the videos. We experiment with NLP data aug-
mentation techniques [16] to increase the model’s general-
ization capabilities.

Working entirely in the environment of Google Colab
Pro, this work shows different experiments made, the exe-
cution time they took, and promising results for video cap-
tioning following this approach.

2. Related Background
Previous studies have explored pre-training models on

vision-language tasks with large datasets of image-text
pairs, learning generic representations that can later be fine-
tuned for specific tasks [1, 10, 11, 15, 3, 24, 25, 28].

Specifically, this work is based on Bottom-Up atten-
tion [1], and OSCAR [12], two contemporary architectures
and models with high results on different V+L tasks. An-
derson’s et al. Bottom-Up and Top-Down model won first
place in the 2017 VQA Challenge with 70.3% overall accu-
racy [1]. Furthermore, OSCAR created a new SoTA of six
vision-language understanding and generation tasks, with
its different finetuned models [12].

2.1. Bottom-Up attention

Bottom-Up is the encoder phase of Anderson’s et al.
model. It generates the features that can later be used on
different V+L tasks, defined in bounding boxes, class tags,
probability scores, and the relationship between objects. It
was pre-trained first by initializing Faster R-CNN [20] with
ResNet-101 [7] pre-trained for classification on ImageNet
[23], then trained on Visual Genome [9] data. Top-Down,
the decoder phase, was trained first with Cross-Entropy
Loss and then with CIDEr optimization using Self-Critical
Sequence Training (SCST) [21]. This work uses the fea-
tures generated by the Bottom-Up encoder.
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2.2. OSCAR

OSCAR: Object-Semantics Aligned Pre-training is a
new cross-modal pre-training method. It leverages anchor
points to facilitate the learning of image-text alignments.
The essence of OSCAR is motivated by observing that
salient objects in an image can be accurately detected, and
are often mentioned in its annotations (sentences). For ex-
ample, on the MS COCO dataset [14], the percentages that
an image and its paired text share at least 1, 2, 3 objects are
49.7%, 22.2% and 12.9% respectively.

OSCAR is an enormous model, pre-trained with 6.5 mil-
lion text-image pairs gathered from different public V+L
datasets [8, 17, 14, 22, 27], and further finetuned for IC
with COCO. As will be shown further in this work, OS-
CAR quickly overfits our relatively small dataset. Different
techniques are required for the model to learn and general-
ize properly.

3. ActivityNet Video Dataset

ActivityNet: A Large-Scale Video Benchmark for Human
Activity Understanding [6] is a dataset built for video clas-
sification, trimmed activity classification and activity detec-
tion. It covers a wide range of complex human activities.
The videos are mainly between 5 and 10 minutes long and
contain tags for the activity class.

The ActivityNet-Captions contains 20k videos amount-
ing to 849 video hours with 100k full descriptions, each
with its unique start and end time. On average, each of the
20k videos in ActivityNet contains 3.65 temporally local-
ized sentences [6].

To encourage participation in the ActivityNet Dense Cap-
tioning Events in Videos challenge1, the creators of Activ-
ityNet team up with other researchers [7, 5, 19] to make
available other resources: RBG frames extracted at 5FPS
(200GB) and frame-level features for them (89GB). The
frames for all videos were extracted with FFmpeg at 5 FPS
and uniformly scaled to 320x240. We make use of these
extracted and scaled frames as a representation of Activi-
tyNet, but we extracted the features using Anderson’s et al.
Bottom-Up mechanism [1].

3.1. ActivityNet transformation into Image Cap-
tioning

The starting point of the used ActivityNet dataset [7, 5,
19], although represented by frames instead of video, is
still a Video Captioning dataset. It was transformed into an
Image Captioning dataset by pairing each caption with the
frame exactly in the middle between its starting and ending
time-lapse. The splits provided by [7, 5, 19] consist of a

1http://activity-net.org/challenges/2020/tasks/
anet_captioning.html

training set with 10k captions and two validation sets with
almost 5k captions each.

3.2. Feature extraction

We generated the features using Anderson’s et al.
Bottom-Up attention[1] trained model with the configura-
tion provided in the public GitHub project’s repository2.
Google Colab Pro was the working environment, with an al-
located Tesla P100-PCIE-16GB or Tesla V100-SXM2-16GB
GPU and a high-RAM runtime. The pre-trained model cor-
responds to the Faster R-CNN, ResNet-101, and end2end
combination.

The two validation sets provided by [7, 5, 19] are set
aside for the final testing phase. After generating features
and data cleaning, 88 captions were eliminated from the
original 37421 in the training set and split into the final sizes
of mini train and mini val with 31733 and 5600 image-
sentence pairs each, following an 85%-15% distribution.
The datasets used throughout this work are mini train and
mini val.

4. Methodology
The final objective is to train an IC model to generate

captions for the ActivityNet dataset that can later be fused
to describe each video in a story-like fashion. We executed
different experiments in the OSCAR training phase.

4.1. Training OSCAR

OSCAR parameters were initialized with the released
checkpoint trained from BERTBASE and further trained
for 30 epochs on COCO3. We trained this checkpoint with
the generated features of ActivityNet, with a training batch
size of 16 and an eval bach size of 64 (larger batch sizes
caused a memory crash in Google Colab Pro), saving and
evaluating the model every 5 epochs. The environment used
was the same as when extracting the features: Google Co-
lab Pro with an allocated Tesla P100-PCIE-16GB or Tesla
V100-SXM2-16GB as GPU hardware acceleration and a
high-RAM runtime.

4.2. NLP Data Augmentation

Different techniques are available to augment sentences
[16]. The selected methods include Back Translation
(translating to a different language and back), Random
Word Insertion and Random Word Substitution using
BERT [4] as a language model to select only contextually
correct words.

One dataset was created using Back Translation, gen-
erating one sentence through German and another through

2https://github.com/peteanderson80/
bottom-up-attention

3https://github.com/microsoft/Oscar
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Russian for every human annotation (3x the original size).
Moreover, we created a different dataset with four new sen-
tences generated by Random Insertion and four more with
Random Substitution, both using BERT (9x the original
size). Back Translation ensured fluency and consistency in
the new sentences, while Random Insertion and Substitu-
tion not always generated natural sentences. We applied
data augmentation only in the training processes; we used
the original datasets to obtain both the training and evalua-
tion scores.

5. Results
All graphs and images can be found in Section A: Sup-

plementary Material. The metrics include BLEU-1, BLEU-
2, BLEU-3, BLEU-4 (B4), ROUGE L (R), CIDEr (C) and
SPICE (S). The BLEU scores have similar values, and for
illustration purposes we show a condensed version of only
BLEU-4.

We trained the pristine dataset for 200 epochs, the Back
Translation dataset for 40 epochs, and the Random Inser-
tion and Substitution dataset for 50 epochs. As shown in
the score graphs, datasets with augmented data require less
epochs to reach similar overfitting scores, as they contain
more data than the original. A more fair comparison can
be made using the global optimization steps, which corre-
spond to the number of times the model’s parameters were
updated. In the score graphs, epoch 0 corresponds to the ini-
tialization model without any training. The required time to
train a single epoch of the pristine dataset, the 3x augmented
dataset, and the 9x augmented dataset were: 7 minutes (23.3
hours total), 25 minutes (16.6 hours total), and 47 minutes
(39.1 hours total), respectively. Evaluating a single model
with mini val and mini train took 20 and 150 minutes re-
spectively. The total time used to evaluate mini val across
all experiments was of 19.6 hours, while the time invested
to evaluate mini train was of 6.1 days.

The training scores of the pristine dataset are shown in
Fig 1. All metrics follow a very similar pattern. These dif-
ferent metrics following a very similar pattern allow us to
simplify the general behavior showing only a single metric
(SPICE) for illustration purposes. The SPICE training and
evaluation scores of this dataset are shown in Fig 2, which
starts overfitting after epoch 80 (global step 158), with a
training score of 55.24 and a validation score of 8.32.

The model is learning correctly, but the metrics do
not show an appropriate generalization (validation scores),
where all validation scores start at a SPICE score of 2.11,
then rise to an average of The training and evaluation re-
sults of the 3x Back Translation dataset are shown in Fig
3. Applying these NLP Data Augmentation techniques al-
lowed the model to overfit with more time but fewer epochs,
achieving in epoch 40 what the pristine dataset achieved un-
til epoch 70; however, the validation scores remained simi-

larly low.
The training and evaluation results of the 9x Random

Insertion and Substitution dataset are available in Fig 4.
The training curve of this experiment is similar to that of the
pristine dataset but a little smoother. However, it needed
much more Optimization Steps to obtain similar training
scores, meaning that the usage of this configuration is slow-
ing the learning process. An example of a single training
frame with its ground truth, multiple data augmented sen-
tences, and its prediction is available in Fig 6.

6. Discussion

Although the evaluation scores do not show a high corre-
lation between predicted output and reference captions, we
can see that the generated captions accurately portray the
visual information in Fig 5. The same effect occurs even
through different checkpoints, as in Fig 7.

More experiments are needed to obtain a model that both
learns and generalizes correctly. One of the reasons why
the evaluation scores are kept low may be tightly related to
the fact that there is only one reference caption per image,
where other IC datasets contain five or more [14], and eval-
uation metrics can make use of these multiple references
[13, 18].

More experiments will be done by increasing the model’s
dropout value and initializing with other models (e.g. with-
out pre-training on COCO). The OSCAR dropout value
used in these experiments was the default of 0.1. Increas-
ing it could result in better generalization by reducing the
model complexity.

Current experiments do not take advantage of the activ-
ity’s class information. Further work will also include trans-
forming the embedded representation generated by Bottom-
Up attention to another one with the same size but trained
using the tag of the activity class to which the frame be-
longs. Feeding this new representation into OSCAR will al-
low it to use the information of the class, which we have not
exploited yet. Another approach to using the Video class is
to add a new bounding box encompassing the entire frame,
tagged with the activity’s class. Once we achieve a stable
model, we can further finetune it for the CIDEr metric us-
ing Self-Critical Sequence Training (SCST) [21].

Overfitting is the first stage towards a robust model. This
work shows that an Image Captioning model can also pro-
cess data created for Video Captioning. We also explore
different methods to tackle the problems that this transfor-
mation creates. We are confident that this exploration will
be helpful when creating custom Image or Video caption-
ing datasets, providing users with tools and techniques to
understand better how to create a functional model and the
possible solutions to challenges they may face.
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A. Supplementary Material

Figure 1. Training and validation scores of OSCAR-ActivityNet

Figure 2. SPICE scores for training and validation without Data
Augmentation

Figure 3. SPICE scores with NLP 3-fold Data Augmentation using
Back Translation

Figure 4. SPICE scores with NLP 9-fold Data Augmentation using
BERT Insertion and Substitution

Figure 5. Example of a caption prediction from the validation set

Figure 6. Example of a caption prediction from the training set
with some augmented sentences.

Figure 7. Different predictions for a validation frame. Note how
even though the sentences are not similar, they describe the image
correctly.


