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Abstract

The optimization of Binary Neural Networks (BNNs) re-
lies on approximating the real-valued weights with their
binarized representations. Current techniques for weight-
updating use the same approaches as traditional Neural
Networks (NNs) with the extra requirement of using an ap-
proximation to the derivative of the sign function - as it is
the Dirac-Delta function - for back-propagation; thus, ef-
forts are focused adapting full-precision techniques to work
on BNNs. In the literature, only one previous effort has tack-
led the problem of directly training the BNNs with bit-flips
by using the first raw moment estimate of the gradients and
comparing it against a threshold for deciding when to flip a
weight (Bop). In this paper, we take an approach parallel
to Adam which also uses the second raw moment estimate
to normalize the first raw moment before doing the compar-
ison with the threshold, we call this method Bop2ndOrder.
We present two versions of the proposed optimizer: a bi-
ased one and a bias-corrected one, each with its own ap-
plications. Also, we present a complete ablation study of
the hyperparameters space, as well as the effect of using
schedulers on each of them. For these studies, we tested
the optimizer in CIFAR10 using the BinaryNet architecture.
Also, we tested it in ImageNet 2012 with the XnorNet and
BiRealNet architectures for accuracy. In both datasets our
approach proved to converge faster, was robust to changes
of the hyperparameters, and achieved better accuracy val-
ues.

1. Introduction

Artificial Intelligence (AI) is having a great momen-
tum in terms of new applications and positive impacts on
society. Deep Learning (DL) is a sub-area of AI that
has demonstrated outstanding capabilities for solving com-

plex tasks in many areas. In computer vision in particu-
lar, it has out-performed previous approaches in tasks such
as Image Classification, Image Recognition, and Image
Segmentation[16, 10, 26, 24, 18].

Current approaches for optimizing DL methods (i.e. for
edge computing applications) are either based on construct-
ing and training lighter neural networks or pruning larger
ones. In particular, in regard to lighter neural networks,
approaches based on Binarized Neural Networks (BNNs),
which uses weights constrained to {−1,+1}, result in mod-
els which are much less computationally expensive, and
lead to noticeable reductions in energy consumption when
implemented on specialized hardware, and far less mem-
ory usage. Moreover, the nature of the BNNs impacts other
types of applications such as for Neuromorphic Computing
[13, 15, 28, 19] and Quantum Computing [9], thus, high-
lighting the importance of these type of networks.

Anderson and Berg [1] proved theoretically and exper-
imentally that BNNs maintain the geometrical properties
of the Convolutional Neural Networks (CNNs), specifically
the properties of the convolution operation. This means
that the angle between a stochastic vector and its binarized
counter-part converges to a small value with an increasing
number of dimensions. Also, the matrix-product is pre-
served.

BinaryNet [4] was the pioneering work proving that
BNNs are viable for complex tasks such as image classi-
fication on ImageNet [25, 7]. XnorNet [23] proved that the
binarized convolution operation could be done by just using
xnor and pop-count operations which dramatically re-
duces the convolution’s complexity. Since then, the subject
has attracted attention and various papers have been pub-
lished for reducing the loss function and training/validation
errors, training deeper BNNs, and using multiple binary
bases for the matter [17, 5, 6, 8, 14, 21, 2].

Even though BNNs have been greatly improved, the
methods for training them have remained mostly un-



changed; they use Stochastic Gradient Descent or an equiv-
alent method. Helwegen, et al. [11] proposed a Binary Op-
timizer (Bop) which instead of using the gradients to update
a “latent weight”, it uses this information to determine when
to “flip” the weights, directly training the net with 0s and 1s.
This method calculates a raw average of the gradients (first
raw moment), and compares it to a threshold to assess when
to modify the weight.

The main focus of this paper is to implement an op-
timizer which only takes into account when to flip the
weights sign/values inspired by Adam [12] instead of using
adapted full-precision methods. Our contributions are:

1. Introduce a second order optimizer for BNNs which
uses the first and second momentum of the gradients.
This optimizer yields better results in terms of accu-
racy (tested on CIFAR-10 and ImageNet 2012) than
the start-of-the-art methods including the first order
optimizer Bop.

2. Explore the effects of each hyperparameter, and study
the effects of using schedulers on them.

With this paper we introduce a specialized optimizer for
BNNs which uses the first and second raw moment esti-
mates of gradients to assess when to modify the sign of the
binarized weight. This method is based on Bop while in-
troducing the advantages of Adam. The obtained results
outperform the other learning methods for BNNs.

2. Background
Consider a neural network, y = f(x,w), with w ∈ Rn,

and a defined loss function L(y, ylabel), where ylabel is the
ground truth (real label). Then, the binarization problem is
defined as:

w∗bin = arg min
wbin∈{−1,+1}n

Ex,y[L(f(x,wbin), ylabel)] (1)

As global optimums usually cannot be found, approxi-
mate solutions via Stochastic Gradient-Descent (SGD) are
used instead. The problem arises when evaluating the gra-
dient ∂L

∂w depends on ∂wbin

∂w . During the forward pass, the
binarization of the inputs and weights is achieved by using
the sign function:

wbin = sign(w) (2)

As the gradient sign function is the Dirac Delta function,
it vanishes on every point except on 0 (as seen in Figure
1). Thus, approximations must be used for calculating the
derivative and use it for the gradients of the weights.

One of the most common approximations is the Straight-
Through Estimator (STE) [29] which is defined as:

Figure 1: Sign function and its derivative, the Dirac delta
function. The derivative banishes everywhere but in 0.

∂L

∂w
=

∂L

∂wbin
1‖w‖≤tclip (3)

In other words, it permits the gradient to go through, ex-
cept for those values where the weights have a large mag-
nitude. The most common case is to use tclip = 1, but
Bethge, et al. [2] tested various values and found that val-
ues between 1.25 and 1.5 work better.

The first approaches towards improving the optimiza-
tion methods for BNNs used different approximations to
the sign function so it could be used for back-propagation.
Some of these approaches use a first or second order poly-
nomial approximation [17] to the sign function or extra
mathematical operations to consider the magnitude of the
weight or the gradient. Still, the most common approxima-
tion is the STE or Clip [29, 23, 3, 4, 22, 27] and the Ap-
proxSign [17]. Recently, Bethge et al. [2] proved that there
is no need for using a different approximation to STE, but
the threshold must be tuned with values different from 1.

2.1. Real-valued approximation with binarized
weights

The most common algorithm for training BNNs is de-
scribed in 1.

Algorithm 1 Traditional training algorithm for BNNs using
Stochastic-Gradient Descent on latent weights as presented
by Helwegen et al. [11]

1: input: Loss function L(f(x,w), y), Batch size K
2: input: Optimizer P : g 7→ δw, learning rate α
3: input: Pseudo-Gradient Φ : L(f(x,w), y) 7→ g ∈ Rn
4: initialize w ← w0 ∈ Rn
5: while stopping criterion not met do
6: Sample mini-batch {x(1), . . . , x(K)};
7: Gradient: g ← 1

KΦ
∑
k L
(
f(x(k);w), y(k)

)
;

8: Update latent weights: w ← w + αP(g);

Conceptually, this seems as a flawed approach as the
only aspect that is enforced is to find when to change the
magnitude of the weight, requiring the use of some pseudo-



weight to be optimized and then binarized. One of the prob-
lems of using this approach is that the gradient with respect
to the binary weight is not enough to trigger the change of
its sign [17]. Therefore, a magnitude-aware gradient was
proposed by Liu et al. which takes into account the magni-
tude of the gradient for changing the weights.

The problem of using “latent weights” as a way of stor-
ing a non-real value by proxy that will be optimized upon
for obtaining the real binary weight, was tackled by Helwe-
gen et al. They demonstrated in their paper that the bina-
rization problem could actually be seen as the sign of the
weight multiplied by its magnitude (momentum). Thus, la-
tent weights were not needed as the problem was almost
identical to using momentum for training full-precision
weights.

3. Related Work
There has been various attempts to adapt full-precision

optimizers to BNNs, but only one that directly tackles the
problem of building a specialized one, Binary Optimizer
(Bop), proposed by Helwegen et al. [11]. This method is
based on the concepts of momentum, and more notably, it
showed that only flipping the sign of the weights is enough
for correctly binarized the weights.

If the sign of the weights is all that matters, an opti-
mization algorithm that only decides when to flip values
makes a more natural manner to learn the weights. Hel-
wegen et al. [11] realized this, and proposed the idea to de-
sign a momentum-like algorithm that stores the gradients
of each weight (with an exponential decay) and when the
accumulated value surpasses a threshold, the weight flips.
This function is shown in algorithm 2.

Algorithm 2 Bop, an optimizer for BNNs [11]. It uses the
first raw moment estimate to decide when to flip the weight
value

1: input: Loss function L(f(x,w), y), Batch size K
2: input: Threshold τ , adaptivity rate γ;
3: initialize w ← w0 ∈ {−1, 1}n,m← m0 ∈ Rn
4: while stopping criterion not met do
5: Sample mini-batch {x(1), . . . , x(K)};
6: Gradient: g ← 1

K
∂L
∂w

∑
k L
(
f(x(k);w), y(k)

)
;

7: Update momentum: m← (1− γ)m+ γg;
8: for i← 1 to n do
9: if ‖mi‖ > τ and sign(mi) = sign(wi) then

10: wi ← −wi;

The latent weights are better understood when thinking
of the magnitude and the sign separately:

w̃ = sign(w) · ‖w‖ := wbin ·m,
wbin ∈ {−1,+1}, m ∈ [0,∞)

(4)

The main rationale for this approach is that the latent
weights encode the inertia values m of the binary weights
wbin. The bigger the magnitude is, the stronger the effect
of this binarized weight. Thus, the gradient can be seen as
an indicator of the “necessity” of changing the sign of the
weight.

4. Second Order Binary Optimizer
(Bop2ndOrder)

As determining when to change the value of a given
weight (when to flip it) is the main purpose of the optimiza-
tion step, our optimizer uses the gradient for this purpose,
as outlined above. For this, we analyzed some full-precision
optimizers and we found a way to adapt them to obtain this
information. The Adam optimizer [12] seemed as the best
choice to be adapted both conceptually and practically, due
to two characteristics: 1) it resembles the work done in Bop
[11], and 2) it further improves it by also using the second
raw moment estimate.

As mentioned above, Bop is a first order binarized opti-
mization method that calculates the first raw moment esti-
mate of the gradients in the following way:

mt = (1− γ)mt−1 + γgt = σ

t∑
r=0

(1− γ)t−rg (5)

Then, this value is compared against a pre-defined
threshold for deciding when to flip the weight:

wit =

{
−wit−1 if ‖mi

t‖ ≥ τ and sign(mi
t) = sign(wit−1)

wit−1 otherwise.
(6)

One thing to note, is that not only the absolute value of
mt should be higher than the threshold, but the sign of it
should be the same as the previous weight. This is due to the
gradient indicating the way of the maximum rate of change;
if the weight points already in that direction, there is no
reason to flip it again.

The natural iteration over this algorithm, is to also in-
clude a second raw moment estimate value for regularizing
the gradients in the form of:

vt = (1− σ)vt−1 + σg2t = σ

t∑
r=0

(1− σ)t−rg2 (7)

As inspired by Adam, this would normalize the gradi-
ent making it invariant to re-scaling, and would make the
training smoother and faster (in terms of the number of iter-
ations). Thus, the previous quantity mt is converted into:



st =
mt√
vt + ε

(8)

Transforming the comparison rule into:

wit =

{
−wit−1 if ‖sit‖ ≥ τ and sign(sit) = sign(wit−1)

wit−1 otherwise.
(9)

This iteration, a novelty of our method is shown in al-
gorithm 3. If we compare this approach to Adam [12], we
notice that no method for correcting bias is presented in the
latter. Although, according to the results of Helwegen et
al. [11] this is not really necessary as the threshold value
takes on this role through schedulers. However, we decided
to include an unbiased version of the algorithm as it would
mitigate overfitting by reducing the bias of the mean and
variance raw estimates. This is done by changing (8) to:

st =
mt/γ√
vt/σ + ε

(10)

Algorithm 3 Second Order Bop. This algorithm uses both
the first and second raw moment estimates. Depending on
if we choose the biased or unbiased algorithm, is the value
of st calculated.

1: input: Loss function L(f(x,w), y), Batch size K
2: input: Threshold τ , adaptivity rate γ, standard rate σ;
3: initialize w ← w0 ∈ {−1, 1}n,m ← m0 ∈ Rn, v ←
v0 ∈ Rn

4: while stopping criterion not met do
5: Sample mini-batch {x(1), . . . , x(K)};
6: Gradient: g ← 1

K
∂L
∂w

∑
k L
(
f(x(k);w), y(k)

)
;

7: Update momentum: m← (1− γ)m+ γg;
8: Update raw variance: v ← (1− σ)v + σg2;
9: Standardized momentum: s← s value(m, v);

10: for i← 1 to n do
11: if ‖si‖ > τ and sign(si) = sign(wi) then
12: wi ← −wi;
13: function s value(m, v)
14: if biased then
15: return m√

v+ε

16: else
17: return m/γ√

v/σ+ε

5. Experimental Results
In this section, we tested thoroughly the behavior of the

Bop2ndOrder algorithm (both biased and unbiased) explor-
ing the effects of its three hyperparameters (γ, σ and τ ) and
the effect of scheduling policies (both increasing and de-
creasing the values) to those hyperparameters. Additionally,

we tested whether the batch or layer normalization works
best for our optimizer. Lastly, we compared our results
against those obtained for Bop.

For the hyperparameters exploration, we used the Bina-
ryNet [4] architecture and tested the code in Google Colab
using either Tesla P-100 or V-100 GPUs.

We included the metric of πt introduced by Helwegen et
al. [11] which monitors the ratio of weights flipped at each
step. It is defined as:

πt = log

(
# flipped weights at time t
Total number of weights

+ e−9
)

(11)

We used this evaluation parameter for analyzing the ef-
fects of each of the hyperparameters γ, σ and τ .

5.1. Second Order Binary Optimizer
(Bop2ndOrder)

In this section, we present the complete ablation studies,
comparisons, and tests on CIFAR10 and ImageNET of our
optimizer.

5.1.1 Biased or Unbiased. Batch or Layer Normaliza-
tion

As previously stated, the Second Order Bop can be formu-
lated in an unbiased or a biased case. Batch and Layer Nor-
malization can also be used. In order to test this, in Figure
2 we present a combination of the 4 possible cases. For
choosing the correct hyperparameters, we did a search over
all possible combinations of powers of 10 of each of the hy-
perparameters arriving to the combination γ = 1e− 7, σ =
1e− 3, τ = 1e− 6.

In the original work [11], they used Batch Normalization
(BN) in all of the tested architectures. Recently, Bethge et al
[2] compared this layer against Layer Normalization (LN)
in their Binary Dense Net architecture obtaining better re-
sults with LN. Also, Nayak et al [20] tested this idea using
the Bop optimizer with the BinaryNet architecture in CI-
FAR10 obtaining similar accuracies but less cross-entropy
loss with LN.

As shown in Figure 2, the best results for the validation
accuracy (top-1) are obtained when combining the BN with
the unbiased version of the algorithm. As a matter of fact,
the accuracy values for each experiment are not as far apart
from each of the cases. The real issue is that using LN in-
troduces lower losses without impacting the accuracy.

5.1.2 Hyperparameters exploration

To understand the effect of each of the three hyperparame-
ters, we performed an ablation study based upon the optimal
values that we previously obtained. Also, we implemented
different schedulers for each of the hyperparameters.
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Figure 2: Bop2ndOrder tested with Batch Normalization
and Layer Normalization combined with the Biased and
Unbiased algorithms using the hyperparameters
γ = 1e − 7, σ = 1e − 3, τ = 1e − 6 and a batch size of
100. The line (-) refers to the training and the dashed line (-
-) refers to the validation

Ablation Studies.
Taking as the starting point the “optimal” values that we ob-
tained for CIFAR-10 (100 epochs, BinaryNet, batch size of
100), we tested two magnitudes of 10 lower and two higher
for each hyperparameter while letting the values of the other
two remain constant.

In figure 3, we show the results of this exploration. γ and
τ have similar effects to the learning rate (as expected from
Bop [11]). σ works differently as its impact on accuracy is
negligible. Its effect relies on increasing or decreasing the
number of bit-flips. This could be used for stabilizing the
network after some epochs by decreasing the value of this
hyper-parameter.

The effect of schedulers.
In order to get a better grasp of the behaviour caused by
these hyperparameters, we tested exponential schedulers
(both increasing and decreasing by factors of 10 every 100
epochs show in figure 4), for 350 epochs for the biased and
the unbiased versions of the algorithm. For the base values,
we chose the ones previously obtained γ = 1e − 7, σ =
1e− 3, τ = 1e− 6,

In figure 4, we show the results of applying these sched-
ulers in the unbiased version of the algorithm. As expected,
decreasing or increasing γ directly affects how well the net-
work learns. Decreasing it affects positively while increas-
ing the value causes the algorithm to behave worse for a
period of time before trying to set to the new value. For σ
both scheduling policies affect the hyperparameter equally;

thus, it seems to be only a normalizing parameter. Lastly,
τ seems to not affect the accuracy in a major way; this is
counter-intuitive as having a higher value should avoid more
weights to flip values and vice versa. Thus, we decided to
explore the same schedulers with the biased algorithm. The
behavior remains largely the same (for γ and σ), but τ does
affect the behavior of the algorithm; increasing the value of
the threshold positively affects the accuracy. This could be
explained by thinking of τ as a regularizer value by restrict-
ing or enabling more weights to be flipped. Thus, we want
the algorithm to be more stable towards the end by increas-
ing the value of the threshold.

With these results, we can hypothesize that the biased
version is more akin to be tuned by the hyperparameters
than the unbiased version. Thus, to fine-tune the network,
the biased algorithm should work better.

5.1.3 Bop vs. Bop2ndOrder

Bop2ndOrder has doubled the full-precision values as it is
storing the second order momentum; however, the training
times are increased by 15%. Considering this, we compared
both optimizers (with their optimal hyperparameters). This
is shown in Figure 5. As it can be seen, Bop2ndOrder is
marginally superior with a validation accuracy (top-1) of
85.6% against the Bop accuracy of 79.6%. Also, it can be
seen that Bop2ndOrder tends to overfit (Adam [12] exhibits
the same problem). Thus, a threshold increasing scheduler
was used as a mean of coping with this issue.

5.2. CIFAR-10

In order to carry out a fair comparison with Bop [11],
we used the BinaryNet architecture running for 500 epochs
and using a batch size of 50. The difference here is the
type of schedulers used. In our case, we used a polynomial
scheduler with γ = 1e − 5 → 1e − 8, σ = 1e − 2 →
1e − 5, τ = 1e − 7 → 1e − 2 and a learning rate for the
Adam optimizer of 0.01 that goes to 0.001 (polynomially)
and otherwise default settings (β1 = 0.9, β2 = 0.999 and
ε = 1e − 7). Also, we run the experiments with both the
biased and the unbiased version of the algorithms.

In figure 6, we show the results of this run. The valida-
tion accuracy (top-1) obtained for the biased version was of
91.9% and 91.4% for the unbiased one. Both results are
higher than the Bop result of 91.3%. Running the given
code for the Bop algorithm we obtained and accuracy of
91.0%.

Both of our results only reach the best values at the last
iterations - which is a behavior also presented with Ima-
geNet -, while the Bop algorithm reaches an stable result
100-150 epochs before that. Also, the unbiased version is
much more steady while the biased version is erratic. The
results are summarized in Table 1.
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Figure 3: Results of testing diverse hyperparameter values for Bop2ndOrder (unbiased) in BinaryNet for 100 epochs.

Optimizer Training Acc Validation Acc
Bop [11] 96.7% 91.0%

Bop2ndOrder
Unbiased (ours) 98.3% 91.5%

Bop2ndOrder
Biased(Ours) 98.1% 91.9%

Table 1: CIFAR-10 comparison between optimizers using
Binary-Net [4]

5.3. ImageNet

We tested Bop2ndOrder on ImageNet using the bina-
rized networks: XnorNet [23] and BirealNet [17]. We also
tried training with the BinaryNet architecture [4], but the
increase in memory usage caused by storing the second or-
der values proved to be high enough not to be feasible in a
personal computer. The tests were done in a computer with
8 NVIDIA Tesla-P100 GPUs.

We trained XnorNet for 100 epochs and BirealNet for
150 epochs with a batch size of 1024, and standard prepro-
cessing with random flips and resize. This is the same as in
Bop [11] for comparison purposes.

For the hyperparameters, we used polynomial schedulers
with γ = 1e − 4 → 1e − 9, σ = 1e − 5 → 1e − 2, τ =
1e−8→ 1e−5 and a learning rate for the Adam optimizer
of 2.5e−3 that goes to 5e−6 (polynomially), and otherwise
default settings (β1 = 0.9, β2 = 0.999 and ε = 1e− 7). In
the case of XnorNet, we also used the l2-regularization of
5e − 7 that was used in Bop [11]. The obtained results are
summarized in Table 2.

To further analyze the behavior of our optimizer, we also
trained both architectures for 300 epochs with the unbiased

Optimizer Acc XnorNet [23] BirealNet [17]
Bop2ndOrder

(ours)
Top-1 46.9% 57.2%
Top-5 70.9% 79.5%

Bop [11] Top-1 45.9% 56.6%
Top-5 70.0% 79.4%

Latent
weights

Top-1 44.2% 56.4%
Top-5 69.2% 79.5%

Table 2: ImageNet comparison between optimizers using
two common BNNs.

version. In Figure 7 (orange line) the results for the run us-
ing XnorNet are shown. The obtained validation accuracies
are: 46.9% (top-1) and 71.3% (top-5). Still, we get better
results than Bop (1% in accuracy).

In Figure 7 (blue line) the results for the run using Bire-
alNet are shown. The obtained validation accuracies are:
56.7% (top-1) and 79.4% (top-5). We have a 0.1% advan-
tage over Bop, almost anecdotical.

There is a interesting fact about the graph of Bireal-
Net, at 300 epochs the trend is an “exponential” growth;
thus, we decided to freeze the hyperparameters and train
for 30 epochs more. With these new epochs, the results are:
57.1% (top-1) and 79.6% (top-5). We have a 0.5% advan-
tage over Bop.

6. Discussion
Referring to the results with CIFAR10 (Table 1) both of

our algorithms present better results. Also, the biased ver-
sion has higher validation accuracy even though its behav-
ior is more chaotic. This could be due to its more tunable
capacity as it is more affected by the modification of the
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(b) Exponential Scheduler (by powers of 10) applied to
σ in the unbiased version of the algorithm.
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(c) Exponential Scheduler (by powers of 10) applied to
τ in the unbiased version of the algorithm. Unbiased
algorithm. The scheduler does not change the behavior.

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

τ decrease
τ increase

0 50 100 150 200 250 300 350
Epoch

0.5

1.0

1.5

Lo
ss

(d) Exponential Scheduler (by powers of 10) applied to
τ in the unbiased version of the algorithm. Biased al-
gorithm. Here, the scheduler does change the behavior.

Figure 4: Exponential schedulers applied to the optimal hyperparameters of Bop2ndOrder unbiased and biased. For γ and σ
the behavior is the same for both. For τ , we have different effects on both algorithms.

hyperparameters (as previously discussed).
With respect to the ImageNet results (Table 2) again our

algorithm present better results than both Bop (by 0.6%
with BirealNet and 1.0% with XnorNet) and the latent
weights algorithms.

Our algorithm presents a peculiar behavior in both
datasets (CIFAR-10 and ImageNet 2012) where the occurs
a sudden increase in accuracy during the last epochs of the
training. This could be due to the optimizer suddenly es-
caping from a local minimum, but there is no certainty of

the reason of this behavior since this trend did not continue
after increasing the number of iterations.

6.1. Robustness

While testing different configurations of the hyperpa-
rameters on BinaryNet trained for 100 epochs with CIFAR-
10, we noticed that the hyperparameters can be changed in
power of 10 or less without having great impact in the val-
idation accuracy, at least for the unbiased algorithm. The
only thing to take into account is that the proportion be-
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Figure 5: Bop and Bop2ndOrder compared in CIFAR10 us-
ing BinaryNet trained for 150 epochs. The line (-) refers to
the training and the dashed line (- -) refers to the validation
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Figure 6: Optimum CIFAR10 run using Bop2ndOrder (bi-
ased and unbiased) compared to the Bop run. The line (-)
refers to the training and the dashed line (- -) refers to the
validation

tween hyperparameters must be maintained. This indicates
that Bop2ndOrder is robust enough to perform almost op-
timally when the exact hyperparameters are now known (at
least for these experiments).

7. Conclusions and Future Work
In this paper we presented a new algorithm based on

the interpretation of the BNN training methods as latent-
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Figure 7: Optimum ImageNet using Bop2ndOrder and both
the XnorNet and the BirealNet architectures. The line (-)
refers to the train accuracy and the dashed line (- -) refers to
the validation one

weights encoding inertia [11]. Thus, we decided to take
this approach (parallel to that of momentum) and offer a
second order approach which also uses the second raw mo-
ment estimate akin to Adam [12]. With this new optimizer,
we have surpassed the state-of-the-art results of BinaryNet
on CIFAR-10, and the same for XnorNet and BirealNet on
ImageNet 2012.

In general, the results surpass those presented in pre-
vious methods for optimizing BNNs. The caveat is that
Bop2ndOrder uses more memory and training time (be-
tween 15% - 25% for the biased version and between 20
- 32% for the unbiased one) than the other binary optimizer,
Bop. Instead of choosing one over the other, there could be
the case that both are used similar to how for training full-
precision CNNs one optimizer (normally Adam) is used be-
fore another with less overfitting (such as RMSprop). Here,
as Bop2ndOrder achieves faster a higher accuracy, could be
used for the first epochs, and then change to Bop in order to
stabilize the network and get less overfitting.

One exciting development that we foresee in the near
future for these type of optimizers, is the introduction of
specialized regularizers for BNNs (acting on the binary
weights). Thus, Bop2ndOrder would be highly improved
by using these methods as the training accuracies are way
beyond those obtained using previous attempts.
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