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Abstract 

 

Rapid urban growth in developing countries is causing a 

great number of urban planning problems. To control and 

analyze this growth, new and better methods for urban land 

use mapping are needed. This article proposes a new 

method for urban land-use mapping, which integrates 

spatial metrics and texture analysis in an object-based 

image analysis classification. A high-resolution satellite 

image was used to generate spatial and texture metrics 

from the landcover classification using machine learning. 

The most meaningful spatial indices were selected by visual 

inspection and then combined with the image and texture 

values to generate the classification. The proposed method 

for land-use mapping was tested using a 10-fold cross 

validation scheme, achieving an overall accuracy of 92.3% 

and a kappa coefficient of 0.896. These steps produced an 

accurate model of urban land use, without the use of any 

census or ancillary data, and suggest that the combined use 

of spatial metrics and texture is promising for urban 

land-use mapping in developing countries. 

 

1. Introduction 

The global urban population increased from 30% to 

almost 55% between the years 1950 and 2014 [1]. This 

urbanization can also be represented as an increase in urban 

land, which is predicted to occupy an additional 1.2 million 

square kilometers [2]. This expansion is most likely to 

happen in developing countries [3, 4], and some do not 

possess the resources to cope with this growing social 

phenomenon, thus causing segregation, slums, deficiency 

of infrastructure, social inequality, and uncontrollable 

urban sprawl. The problem of land-use mapping is 

challenging in developing countries as urban areas are more 

heterogeneous, there is poor resource and budget 

allocation, and a lack of expertise, as well as corruption [5]. 

Currently, the processes to obtain land-use and land-cover 

maps and zoning for urban planning in developing 

countries are time consuming and costly since they tend to 

rely on census data [6-7] and in some countries the last 

major detailed urban land-use maps date back to the 1970s 

[8], whereas the environment of a city is constantly 

changing in terms of shape, size and patterns of land cover, 

land use, and transport. This means that national census 

information is immediately out of date. 

In Mexico, land-cover and land-use mapping must be 

done mainly by the government through the National 

Institute of Statistics, Geography and Informatics (INEGI 

for its initials in Spanish). In the 1980s INEGI started to 

develop national land-cover mapping through intensive 

fieldwork and visual interpretation of aerial photography 

[9]. The classification structure for these maps overly 

complicated, the classes keep changing with every new 

administration, the mapping methodology and accuracy 

levels are unknown. Despite this, they are considered to 

have good accuracy and are widely used [10]. INEGI 

continues to update this database every without explaining 

the methodology or accuracy levels [10-11]. Due to the 

complexity of urban land use, its production is largely 

based on visual interpretation of aerial and satellite images 

and census data, which is subjective, as well as time 

consuming and costly [11-12]. Recent attention to 

methodologies based on spatial metrics and machine 

learning has shown promise for improved accuracies using 

image data alone [13]. This article proposes a new method 

for urban land-use mapping, involving spectral, spatial, and 

textural information from satellite images, which provides 

good classification accuracy at a high level of detail, 

without the need for survey or official census data. 

1.1. Spatial metrics 

Spatial metrics are based on spatial representations of the 

landscape and identify and quantify the spatial 

heterogeneity of images using individual patches in the 

same class or all patches in the whole landscape. These 

metrics are derived from fractal geometry and are now 

recognized as essential inputs to automated land-use 

mapping [14]. Their ability to measure the structure and 

arrangement of the urban landscape can help to improve the 

analysis and modelling of urban growth and the changes in 

land-use over time [15]. These metrics can also represent 

spatial complexity and configuration in three dimensions: 

structure (shape, size, number), function (interaction of the 

spatial elements), and change (fluctuations trough time) 

[16], which further reduces the uncertainty in class 

allocation. Although spatial metrics have been used as a 

post-classification tool to measure, model, and analyze the 

state or changes in image classification, their values have 
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not been explored as complementary bands in land-use 

classification. The initial land-cover map was trained for 

six classes: bare soil (containing natural, construction, and 

sand), vegetation (any type including trees, shrubs, parks, 

agriculture, and urban vegetation), water (rivers, canals, 

and irrigation systems), bright roof (normally thermoplastic 

covers used in industrial factories and high-income 

neighborhoods), dark roof (typically red brick, wood, or 

asphalt), and impervious surfaces (roads, streets, and 

parking lots). The spatial metrics were selected based on 

visual analysis of the graphic representations of their 

numerical values from the initial land-cover map. 

1.2. Random Forests 

 

Random Forests works as an ensemble learning 

algorithm based on decision tree classifiers, bagging, and 

bootstrapping. The algorithm is based on decision trees 

working as classifiers. Each tree is trained by 

bootstrapping, using different samples from the training 

data. Also, each tree is trained using a random subset of the 

predicting variables (in this case, the spectral bands of the 

satellite image). Random Forests uses many decision trees, 

where each tree casts a vote, and the prediction of the class 

is decided by the majority vote. [17] The Random Forests 

algorithm was selected because it is fast and can handle 

many features without affecting the overall accuracies. 

1.3. Geographic object-based image analysis (GEOBIA) 

 

GEOBIA segmentation extracts meaningful objects 

usually existing at various scales within a satellite image. 

Since different physical features recognizable for urban 

land cover and land use vary greatly in size, the 

segmentation must be processed at different resolutions. 

The multiresolution segmentation adopted in this study 

requires the setting of the input parameters scale, shape, 

compactness, and band weight. The scale parameter is the 

threshold of variance and is weighted against the shape and 

compactness parameters, which controls the extension and 

border of the objects. By increasing the scale parameter, 

larger objects will be extracted from the image as the 

spectral heterogeneity increases. The setup for 

multiresolution segmentation parameters is created on a 

trial-and-error basis through visual analysis [18]. 

 

1.4. Texture metrics 

Texture in remote sensing describes the variations 

between the values of the intensity of the light reflected to 

the sensor. These spikes in intensity can be measured and 

provide valuable data about the different objects that form 

urban areas. Texture metrics include mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second 

moment, and energy. For the texture analysis, the 

grey-level co-occurrence measures for the eight spectral 

bands were extracted [19]. 

2. Methodology  

The method used a WorldView-2 multispectral image 

with eight spectral bands (coastal blue, blue, green, yellow, 

red, red edge, near-infrared 1 and 2) and a spatial resolution 

of 0.5 m acquired in September 2014. The method first 

combines GEOBIA, texture metrics, and Random Forests 

to obtain a land-cover map, extracts spatial indices from 

derived land-cover map, and finally integrates all derived 

data to produce the urban land-use map using Random 

Forests for classification (Figure 1). The method is 

validated using a 10-fold cross-validation approach.  

 

 
Figure 1: Method workflow. 

 

2.1 Study area 

 

The study area is in the northern border town of Mexico, 

Ciudad Juarez, Chihuahua, a manufacturing town with over 

1.3 million inhabitants. The city is located between 31° 

47′  N and 31° 07′  N and between 106° 11′  W and 

106° 57′  W. The city’s area is approximately 3561 km2 

with an urbanized core of 353 km2, of which the study area 

comprises 378 km2. Historically the city follows the 

standard Latin American model: a concentric grid pattern 

of primarily low-rise buildings with irregular settlements 

on their urban periphery. 

3 Results 

 

In this bottom-up multiresolution segmentation algorithm, 

the number of homogenous objects is large at higher scales, 

whereas smaller objects are realized at lower scales, which 

results in longer processing time. The parameters to adjust 

were scale, shape, and compactness. After various 

experiments and visual analysis, it was decided to use the 

values 75, 0.3, and 0.5, respectively, giving weight only to 

the spectral bands. 
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Figure 2: Training, segmentation, and ground reference. 

 

General landscape and class-level metrics were created. Of 

the total of 114 indices that were analyzed by visual 

interpretation, only 27 were selected for the final 

classification. These indices were selected by visual 

interpretation of their values to see which ones typified 

different types of land use.  

Once all the spatial and textural data were collected, they 

were grouped together to create a new image with the eight 

original bands from the WorldView-2 image. This was 

achieved by transforming all these metrics to images and 

then layer stacking them into a single stack before 

reapplying land-use classification using the training data 

set shown in Figure 2(a). This data set contains 150 objects 

per class, with 4 basic urban land-use classes: industrial 

zones (including big bright roof and impervious objects 

bigger than 10,000 m2), mixed use zones (bright roof and 

impervious objects like parking lots with any kind of 

vegetation), natural areas (comprising water, vegetation, 

and bare soil objects typical of areas in protection, 

mountains, water canals, agriculture, and the desert), and 

residential zones (small dark roof objects lower than 500 

m2 and bright roof objects smaller than 1500 m2), 

distinguishing between low and high income was possible 

based on the density of impervious class, where a 

disorganized pattern is characteristic of unplanned 

neighborhoods and irregular settlements that are typically 

habited by low-income population whereas a more compact 

and grid pattern denotes a higher social level with addition 

of vegetation areas like private parks. A subset of the image 

after segmentation is shown in Figure 2(b).  

Ground reference of land-use data from a subset of the city 

were manually identified as the training data set for the 

whole city (Figure 2(c)). In this case a total of 176 columns 

exists in the attribute table of this image.  

The attributes consist of the 64 texture metrics, 8 spectral 

bands, 27 spatial metrics (spectral and spatial bands 

including their mean, standard deviation, and skewness 

values), and a variety of 7 object attributes (border index, 

compactness, roundness, border length, asymmetry, 

density and number of pixels).  

The final classification was implemented with a random 

forest scheme of 350 trees, each constructed while 

considering 20 random features. For this classification a 

cross-validation approach was implemented to test the 

accuracy of the land-use mapping. The 10-fold 

cross-validation obtained an overall accuracy of 92.3% and 

a kappa coefficient of 0.896. The final land-use map for the 

city of Juarez, Mexico is shown in Figure 3. 

 
Figure 3: Urban land use of the study area.  

4. Conclusion. 

This article presents a new method for urban land-use 

classification using high-resolution satellite images. Its 

strength lies in the integration of spectral, spatial 

contextual, object-based and texture information used as 

input features to automated classification of urban land use 

in cities of the developing world. The method can provide 

land-use data at whole city scale from remotely sensed 

images without the aid of census or survey data. The 

proposed method was tested in Ciudad Juarez, Mexico, 

using a WorldView-2 high-resolution satellite image. The 

results created a model of urban land use for the city 

with accuracy of 92.3% and 0.896 of kappa coefficient. 

This method can be used operationally by urban planners to 

solve land allocation and zoning issues and provide a 

foundation for the urban development department of the 

local government database. 
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