
Talking with signs
A simple method to detect nouns and numbers in a non-annotated signs language

corpus

Eric Raphael Huiza Pereyra, César Augusto Olivares Poggi
Pontificia Universidad Católica del Perú
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Abstract

People with deafness or hearing disabilities who aim
to use computer based systems rely on state-of-art video
classification and human action recognition techniques that
combine traditional movement pattern recognition and deep
learning techniques. In this work we present a pipeline
for semi-automatic video annotation applied to a non-
annotated Peruvian Signs Language (PSL) corpus along
with a novel method for a progressive detection of PSL el-
ements (nSDm). We produced a set of video annotations
indicating signs appearances for a small set of nouns and
numbers along with a labeled PSL dataset (PSL dataset).
A model obtained after ensemble a 2D CNN trained with
movement patterns extracted from the PSL dataset us-
ing Lucas Kanade Opticalflow, and a RNN with LSTM
cells trained with raw RGB frames extracted from the PSL
dataset reporting state-of-art results over the PSL dataset
on signs classification tasks in terms of AUC, Precision and
Recall.

1. Introduction

The World Health Organization (WHO) stated that 466
million people world wide have disabling hearing loss, esti-
mating that by 2050 over 900 million people will have dis-
abling hearing loss that will represent a global cost of 750
million dollars annually [5].

The Peruvian Institute of Informatics and Statistics
(INEI) conducted a national disabilities survey with the ob-
jective of segmenting and acquiring a better understanding
about disabilities that affect the Peruvian population [3].
Results showed that 1.8% of the Peruvian population suf-
fer at least partial when not permanent deafness or hearing
limitations.

Peruvians with deafness or hearing limitations use the
Peruvian Signs Language (PSL) as their main communica-
tion medium. PSL is of mandatory usage at universities
and certain public institutions, henceforth the importance
of designing systems that are capable to support PSL in-
puts and outputs. Furthermore, in the same way as spoken

languages, signs languages also present local variations e.g.
people who live in Lima metropolitan area are not expected
to use the same set of signs as people in other parts of the
territory. This work uses the PSL variation used in Lima
due to the difficulty or inability to find datasets for other
PSL variations.

The Grammar and Signs research group of the Pontifi-
cal Catholic University of Peru (PUCP) built the first PSL
corpus [4] which is publicly available at the university dig-
ital archives. It is important to highlight that the corpus is
neither labeled or annotated and cannot be used as it is for
training or testing a model.

In this work we are approaching signs detection as a su-
pervised learning task. Supervised learning requires labeled
datasets to achieve satisfactory results during training and
inference tasks. At the time of writing this work there were
no labeled datasets available for PSL [2]. It configures a
gap that could prevent or hinder research work on Human-
Computer-Interaction at the Peruvian or Latin American
space.

Current advances in Computer Vision (CV) and Natural
Language Processing (NLP) make it possible to conceive
systems that are capable of detecting and transcribing ele-
ments of sign languages thereby improving systems acces-
sibility for people with physical limitations. This work re-
ports results of a research conducted with the goal of pro-
ducing a labeled PSL dataset for a set of signs limited to
nouns and numbers as well as a novel method for detecting
PSL signs by answering the following research questions:

• What are the currently available techniques for produc-
ing a labeled dataset for a set of signs limited to nouns
and number from the non-annotated PSL corpus?

• What are most relevant and currently available tech-
niques for training a model with the labeled dataset de-
scribed in the question above for detecting PSL nouns
and numbers?

• How precise and exhaustive is the model described in
the above question on the detection of PSL nouns and
numbers?



This work has the main objective of producing a simple
method that can be used as a baseline for other researchers
interested on studying signs language and their different ap-
plications on the Human-Computer-Interaction field.

The rest of the article is organized as follows. In sec-
tion 2 we review the related work on video classification for
human actions recognition using network architectures that
combine CNNs, 3D CNNs and movement patterns for better
features learning, we also review state-of-art pose estima-
tion techniques. In section 3 we introduce nSDm describ-
ing its design and architecture. In section 3.1 we describe
the video annotation and data pre-processing techniques ap-
plied to produce the labeled PSL dataset. In section 4 we
evaluate nSDm precision and recall and answer research
questions. In section 4.1 we describe the PSL dataset pro-
duced at PUCP and finally in sections 5 and 6 we present
our conclusions and future work.

2. Related Work

2.1. Action Recognition

Human action recognition is an extensively studied field.
Action recognition dataset like UCF101, HMDB51, THU-
MOS14 are available, researches tried to solve the human
action recognition problem using different approaches in-
cluding Optical Flow and 3D CNN [6].

Optical Flow, is defined as the pattern obtained from
the motion of objects, surfaces and edges in a visual scene
caused by the relative motion between the observer and a
scene. It is computed by distributing movement velocities
and brightness across frames. It is a key concept in ac-
tion recognition from videos [9]. Optical flow estimation is
treated as an image reconstruction problem. Given a frame
set, the optical flow is generated and allows to reconstruct
one frame from the others [10]. Formally, taking the optical
flow displacement field as input and training a CNN with
it, then the network should have learned useful representa-
tions of the underlying motions. Even though Optical Flow
represents the movement between a set of frames, if camera
motion is considered as an action motion, it may corrupt the
action classification [8]. Various types of camera motion
can be observed in realistic videos, e.g., zooming, tilting,
rotation, etc.

Motion Boundary Histogram (MBH) is a simple an
efficient way to achieve robustness during human action
detection when camera movements are mixed within the
recorded actions by computing derivatives separately for
the horizontal and vertical components of the optical flow.
Since MBH represents the gradient of optical flow, locally
constant camera motion is removed and information about
changes in the flow field is kept. MBH is more robust to
camera motion than optical flow, thus more discriminative
for action recognition.[8]. 3D CNN are not as effective as

optical flow to detect human actions on its own, 3D CNN
can be trained to learn optical flow so we can avoid costly
computation and storage and obtain task-specific motion
representation [10] and increase models performance, pre-
cision and recall on human action recognition.

2.2. Pose Estimation

Pose estimation is also an extensively studied field.
Techniques based on key points have shown state-of-art re-
sults on human pose estimation. An approach on key points
estimation [7] uses Point of View Determination and Key
Points Prediction components. Point of View Determina-
tion is formulated by the prediction of three Euler angles
(azimut, elevation and cyclotation) generating a global posi-
tion estimate, then a local appearance is modeled by obtain-
ing a heat map that corresponds to the spatial distribution
likelihood for each key point, finally key points predictions
are obtained by combining heat maps obtained in a previ-
ous stage with a conditioned likelihood at the point of view
predicted in the previous stage.

Key points detection methods based CNNs have received
an special attention in Human Pose Detection problems.
CNNs methods are divided in bottom-up and top-down.
Bottom-up methods process images from low resolution to
high resolution, focusing first on detecting joints before as-
sociating them to human actions. Top-down methods focus
first on detecting human subjects and then estimating the
human pose to predict key points.

The datasets MPII and COCO have been used in state-
of-art methods obtaining good results[1] and establishing
a framework for future work in combination with classic
approaches like optical flow for recognizing patterns move-
ment between frames by increasing accuracy on key points
detection.

2.3. Video Classification

Bag of Words (BoW) or Bag of Visual Words (BoVW)
based on natural language processing techniques is one of
the simplest and oldest local descriptor encoding strategies.
In its simplest form, it consists of (i) clustering with k-
means a collection of descriptor vectors from the training
set to build so-called visual vocabulary, (ii) as signing each
descriptor to its nearest cluster center from the visual dictio-
nary, and (iii) aggregating the one-hot assignment vectors
via average pooling [9], when applied to Computer Vision
is a technique used to create images representations or fea-
tures vectors used that can be learned by CNNs, resulting
on improved images classification and video classification.
Feature trajectory detection are much improved using sta-
tistical methods like Fisher Vectors obtaining better results
over traditional BoW Fussing parallel CNN.. The Bag of
Visual Words representation suffers from sparsity and high
dimensionality, in the other hand representations obtained



Figure 1. Video annotation process

using the Fisher Vectors kernel are more compact and dense
which results on better results for image and video classifi-
cation problems.

3. Method
3.1. Video Annotation

The PSL dataset is non-annotated because there is not a
direct relation between the instant when a sign is emitted
and when its translation to Spanish is delivered. We pro-
pose a semi-automatic video annotation pipeline described
in Figure 1 for cleaning, pre-processing and analyzing PSL
videos in order to produce an labeled PSL dataset that can
be used for training nSDm using supervised learning. The
pipeline is described in detail in sections 3.1.1, 3.1.2, 3.1.3
and 3.1.4

We used the PSL dataset to train and test a set of neural
networks described in detail in sections 3.2, 3.3 and 3.4

Implementation details can be found at
https://github.com/erichuizapucp/signs-recognition

3.1.1 Semi Automatic Video Clean Up

The PSL recordings described on 4.1 contain a consider-
able amount of noise introduced during recording sessions.
It makes difficult to easily find video intervals that clearly
show a relation between signs emitted by the informant and
the translation delivered by the translator. Noise factors are
the following:

• Multiple participants speaking during the session.

• Conversations between participants that are not rele-
vant to emitted sings.

Video Start End Alignment
01-session-01-part-01.mp4 00:30 00:55 center

01:15 01:29 center
00:53 01:07 center
08:12 09:01 center

02-session-01-part-01.mp4 00:15 00:21 center
00:15 00:21 center
00:53 01:07 center
02:43 02:47 center
17:33 18:01 left

Table 1. Noise free video segments extract

• High frequency of large silent periods.

A manual video cleanup process is required to find noise
free video intervals. This process requires watching all
videos available at the PSL corpus for manually annotate
the instant when an informant started emitting sings along
with the instant when the translator delivered a translation.
Table 1 shows a manual annotation example.

The recordings show the informant in two alignments
(centered and left), the manual video clean up process also
stores the informant alignment, we use the alignment anno-
tation later in the process during the video frames extraction
to create the labeled PSL dataset.

3.1.2 Video Pre-Processing

Non-annotated PSL videos require processing before any
metadata can be extracted, we propose a sequence of pre-
processing tasks that take advantage of the annotation gen-
erated on 3.1.1. A video splitting processor generates a
set of video chunks using the ffmpeg multimedia frame-
work and stores produced video chunks in Amazon S3 for
later usage. Audio within video chunks is then transcribed
by an audio transcription processor, using the Amazon
Transcription service, we selected the Amazon Transcrip-
tion service because it provides an accurate mapping be-
tween audio participants and transcribed words along with
useful metadata that describes the start and end time when
words are pronounced by the translator.

At the moment of writing this work Amazon Transcrip-
tion service only supported Spain and US Spanish. This
caused certain words that are specific for Peruvian Spanish
not being fully recognized, in order to improve transcription
accuracy we built a custom vocabulary containing Peruvian
expressions which improved Peruvian words recognition,
for the matters of this work Peruvian words that remained
unrecognized were omitted and not processed.



3.1.3 Audio Transcription Analysis

Audio transcription requires additional processing in order
to produce useful information that leads to a successful
PSL signs detection. Bag of Embedding Words (BoEW)
is a widely used technique on Natural Language Process-
ing tasks providing a easy and flexible way to list the most
relevant words based on frequency. This work is focused
on detecting nouns and numbers (our method is designed to
be progressively improved to handle a wider set of PSL ele-
ments) assuming that nouns (numbers are a subset of nouns)
suffer less variations in spoken Spanish than verbs, pro-
nouns, adverbs and adjectives, and provide more semantic
value than conjunctions, prepositions and interjections.

We used Amazon comprehend for text analysis, specifi-
cally the syntax detection functionality which will provide
a comprehensive list of detected language elements along
with a score from 0.0 to 1.0 indicating the detection ac-
curacy, we have selected the ones that have at least a 0.8
accuracy score and omitted the rest, this process was au-
tomated using a transcription detection processor which
uses BoEW to provide a list of most relevant nouns and
numbers based on appearance frequency.

Once a weighted list of nouns and numbers is gener-
ated a mapping showing when nouns and numbers appear in
videos is required, moving forward called Samples Meta-
data. Table 2 shows mapping metadata extracted from PSL.

3.1.4 Samples Generation

Our method requires PSL elements to be represented as a
set of RGB frames and a calculated Optical Flow using the
Lucas-Kanade method, both representations are inputs of
two different models as presented on 3.4.

Translation Delay Factor: The difference in time be-
tween the instant when a sign is emitted and when a trans-
lation for that given sign is delivered is uncertain, we are
calling that uncertainty the translation delay factor, we are
trying to approximate it using a constant value, we chose
a three seconds translation delay factor assuming that most
of the translations will occur between three seconds after a
sign is emitted.

A RGB Samples generation processor uses samples
metadata in combination with the translation delay factor to
determine frames that represent a given PSL element. We
use OpenCV to extract frames and store them following a
hierarchical folder structure that nSDm data loaders will use
to feed data into the RGB branch in the nSDm model archi-
tecture 3.4.1 during training and testing.

An Optical Flow Samples generation processor uses
video frames and the hierarchical folder structure gener-
ated by the RGB samples generation processor to calculate
an Optical Flow representation for PSL elements and store
them in a hierarchical folder structure that will also be used

Token Video Start End
cine 02-session-01-part-01-00.mp4 4.19 4.75
cine 02-session-01-part-01-01.mp4 1.19 1.75
terror 02-session-01-part-01-01.mp4 3.82 4.4
parque 02-session-01-part-01-03.mp4 8.97 9.3
casa 02-session-01-part-01-03.mp4 10.12 10.57
pareja 02-session-01-part-01-04.mp4 3.91 4.36
noche 02-session-01-part-01-04.mp4 4.49 4.92
noche 02-session-01-part-01-04.mp4 7.91 8.2

Table 2. Shows metadata extacted from the PSL dataset: (1)To-
ken could be a noun or a number (2)Video Path shows the video
where the token was detected (3)Start Time time when the token
reproduction starts (4)End Time time when the token reproduction
ends.

by the nSDm data loaders to feed the optical flow branch
on the nSDm model architecture 3.4.1 during training and
testing. We selected optical flow as a samples generation
strategy due to its ability to represent movement traces from
previous frames. It is particular useful for representing body
movement patterns executed by informant while emitting a
PSL sign. A PSL sign is made up of different body move-
ments including: elbow, arms, neck, eyes, shoulders and
hands, which are performed quickly, a way to detect move-
ment traces between frames allows to generate a single im-
age representation of all movement involved on a sign. See
figure 6 for details.

3.2. Opticalflow Model

The model uses a 2D CNN architecture to learn features
from Opticalflow samples calculated from RGB frames us-
ing the Lucas Kanade method for features tracking. Opti-
calflow samples hold features tracked from an entire frames
set sequentially that way all the features found across frame
sets are condensed in a single image.

3.2.1 Model Architecture

The Opticalflow model architecture described in Figure 2
uses a Resnet152 backbone pre-trained with ImageNet. We
used a fine tuning transfer learning approach, the backbone
produces a 7x7x2048 output that then is passed to a Global
Average Pooling layer for obtaining a flattened output of
1x1x2048 which is then passed to a dense layer for logits
computation and finally to a softmax activation function for
classes probability computation.

3.3. RGB Recurrent Model

The model uses a RNN architecture to learn features in a
sequential way from RGB frames set generated by the video
annotation pipeline see Figure 1. RGB frame sets hold a se-
quence of images representing a PSL element. We selected



Figure 2. Opticalflow model architecture

a RNN architecture based on Natural Language Processing
text based techniques that already shown good results.

3.3.1 Model Architecture

The RGB recurrent model architecture described in Figure 3
receives a sequence of decoded video frames bidirectionally
where each frame set represents a PSL sample, frames were
resized to 128x128 for GPU memory optimization during
training decreasing considerably the number of training pa-
rameters. Frame set samples length varies on each sample
requiring a layer to mask entries ensuring same length sam-
ples. We decided on using a bidirectional approach because
we found benefits on learning features from left to right and
right to left in the same way as text based NLP. It uses a
many-to-one architecture with LSTM cells that hold state
of 64 units length, the output produced by the recurrent lay-
ers is then passed to a dense layer for logits computation and
subsequent softmax activation function for classes probabil-
ity computation.

3.4. Novel Signs Detection Model (nSDm)

We propose a novel model for signs detection that en-
semble the two neural networks architectures described in
sections 3.2.1 and 3.3.1 with the objective to learn visual
features like edges, corners and ridges (CNN) and at the
same time patterns learned from a time based series of in-
puts (RNN) to boost the performance on detecting PSL el-
ements. CNN network receives optical flow inputs and the
RNN branch receives RGB frames extracted from the la-
beled PSL dataset described in 3.1.

We designed two neural network architectures for
nSDm, both architectures use pre trained Opticalflow and
RGB models as base models and applies different model
ensemble techniques on top of them. This architectures are
described in detail in section 3.4.1.

For this work we selected the Tensorflow/Keras func-
tional API for its ability to define combined models along
with a versatile data extraction and transformation layer.

Figure 3. Recurrent RGB model architecture

3.4.1 nSDm V2 Model Architecture

Pre-trained Opticalflow and RGB recurrent models are en-
semble using transfer learning with all layers freeze along
with a flexible data input pipeline for data feeding, transfor-
mation and normalization.

The Input pipeline accesses the labeled PSL samples
and applies transformations preparing the data for upper
layers, transformations were applied for both Opticalflow
and RGB frames, PSL Opticalflow samples were resized
to be compliant with ImageNet pre-trained models using
a 224 by 224 shape and three channels for color images
in the other hand PSL RGB samples were resized to a
128x128 shape for GPU memory optimization, data aug-
mentation transformations were not applied due to the na-
ture of the experiment where samples were captured using
similar light conditions and camera orientations, PSL sam-
ples were transformed to tensors and normalized to floats in
the [0, 1] interval. We removed the last dense layers (classi-
fiers) from both base models with the objective to add a sin-
gle classifier in an outer layer. We concatenated the outputs
and finally added a Dense layer with a softmax activation
function to convert logits into probabilities used for a cor-
rect sign classification. nSDmV2 architecture is described
in Figure 4.



Figure 4. nSDmV2 model architecture

4. Experimentation

4.1. Dataset Description

The PSL dataset was developed by the PUCP Grammar
and Signs research group in 2014 and consists in a set of
videos recorded during the interviews of 24 individuals, 12
male and 12 female informants, all of them are Lima Peru
residents and reported to be born with a permanent deafness
condition or acquired the condition before the acquisition of
Spanish.

The dataset consists in 718 video clips recorded with a
ADR-CX220 SONY HD camera which included an embed-
ded microphone. The camera focused only the informant
but also recorded questions, instructions and translations.

The video clips were recorded in three sessions with the
following participants: A coordinator, a PSL [2] translator
and a informant.

Recording Session 1: A 45-60 minutes semi structured
interview that included: Biographic information as well as
habits, anecdotes, opinion about cultural subjects and elici-
tation of names, states and actions.

Recording Session 2: The informant was presented with
a set of 55 cards describing actions and were asked to
choose a set of them in order to build a coherent story that
was subsequently told by the informant.

Recording Session 3: A PSL [2] conversation facilitated
by the coordinator happening between the informant and
the translator.

During all the sessions a PSL [2] translator performs a
translation after a word or phrase is completed.

4.2. Video Annotation Results

The video annotation pipeline described on 3.1 produced
an annotated PSL dataset suitable for using it in a super-
vised learning experiment. The annotated dataset is divided
in two main parts (RGB and Optical Flow samples).

Figure 5. PSL number ”Two” RGB representation

Figure 6. PSL number ”Two” OpticalFlow representation

4.2.1 RGB Annotation Results

It is a hierarchical folder structure where each detected sam-
ple is hold in a folder named with the detected noun or num-
ber containing the video frames Figure 5 shows how video
frames are stored.

4.2.2 Opticalflow Annotation Results

It is a hierarchical folder structure based on the RGB
samples folder structure, the Opticalflow nature of tracing
movement between frames allow to produce a single im-
age for each detected PSL combining all video frames into
a single image representing the movement occurred during
the sign execution, Figure 6 shows an example of an Opti-
calflow generated sample.



Hyper parameter Value
Learning Rate 0.001
No Epochs 10
Batch Size 64
Shuffle Buffer Size 5000

Table 3. training hyper parameters

Name Value
Loss Function Categorical Cross Entropy
Optimizer Adam

Table 4. Loss and optimization functions

Epoch Loss Precision Recall AUC
Epoch 1 3.2775 0.0000e+00 0.0000e+00 0.0900
Epoch 2 2.5090 0.0000e+00 0.0000e+00 0.1327
Epoch 3 2.0908 1.0000 0.0455 0.2616
Epoch 4 1.8167 1.0000 0.0455 0.4361
Epoch 5 1.5668 1.0000 0.1364 0.5651
Epoch 6 1.3303 1.0000 0.1364 0.7557
Epoch 7 1.1146 1.0000 0.3182 0.8657
Epoch 8 0.9199 1.0000 0.4545 0.9205
Epoch 9 0.7464 1.0000 0.6364 0.9657
Epoch 10 0.5981 1.0000 0.6818 0.9877

Table 5. Shows results of training the Opticalflow model with the
5% of the labeled PSL dataset: (1)Epoch identifies the epoch
in in the training process (2)Loss obtained loss (3)Precision ob-
tained precision (4)Recall obtained recall (5)AUC area under the
precision-recall curve.

4.3. Sign detection results

We trained models described on sections 3.2, 3.3 and 3.4
with the 5% of the PSL dataset and validated it with the 5%
of the validation PSL dataset, models were trained during
ten epochs obtaining the results in Tables 5, 6 and 7.

We used the same hyper parameters while training all
models. These are listed on Table 3

We used the same loss function and optimizer for all
models. These are listed on Table 4

Even though models were trained with a small number
of samples and are subject to over fitting, train results show
patterns that indicates that performance will increase as we
add more samples where metrics will become stronger as
we add more samples to the input data pipeline, we are plan-
ning on processing more PSL samples as well as including
PSL samples from external sources as described on section
5.

Train results shows the RGB recurrent model having the
lowest performance with a loss equals to 2.5790 and a AUC
equals to 0.1229 and Precision and Recall equals to 0.0000
which indicates recurrent models are not learning enough

Epoch Loss Precision Recall AUC
Epoch 1 2.7568 0.0000e+00 0.0000e+00 0.0911
Epoch 2 2.6647 0.0000e+00 0.0000e+00 0.1008
Epoch 3 2.6455 0.0000e+00 0.0000e+00 0.1017
Epoch 4 2.6296 0.0000e+00 0.0000e+00 0.1193
Epoch 5 2.6121 0.0000e+00 0.0000e+00 0.1222
Epoch 6 2.6032 0.0000e+00 0.0000e+00 0.1222
Epoch 7 2.5943 0.0000e+00 0.0000e+00 0.1229
Epoch 8 2.5875 0.0000e+00 0.0000e+00 0.1229
Epoch 9 2.5825 0.0000e+00 0.0000e+00 0.1229
Epoch 10 2.5790 0.0000e+00 0.0000e+00 0.1229

Table 6. Shows results of training the RGB Recurrent model with
the 5% of the labeled PSL dataset: (1)Epoch identifies the epoch
in in the training process (2)Loss obtained loss (3)Precision ob-
tained precision (4)Recall obtained recall (5)AUC area under the
precision-recall curve.

Epoch Loss Precision Recall AUC
Epoch 1 2.9711 1.0000 0.0000e+00 0.2959
Epoch 2 2.2159 1.0000 0.0455 0.6564
Epoch 3 1.7181 1.0000 0.0909 0.8154
Epoch 4 1.3140 1.0000 0.1818 0.9340
Epoch 5 0.9585 1.0000 0.3636 0.9691
Epoch 6 0.6747 1.0000 0.5909 1.0000
Epoch 7 0.4739 1.0000 0.8636 1.0000
Epoch 8 0.3261 1.0000 0.8636 1.0000
Epoch 9 0.2263 1.0000 0.9545 1.0000
Epoch 10 0.1651 1.0000 1.0000 1.0000

Table 7. Shows results of training nSDmV2 with the 5% of the
labeled PSL dataset: (1)Epoch identifies the epoch in in the train-
ing process (2)Loss obtained loss (3)Precision obtained precision
(4)Recall obtained recall (5)AUC area under the precision-recall
curve.

features. In the other hand the Opticalflow model performs
better with a loss equals to 0.5981 a AUC equals to 0.9877
a Precision equals to 1.000 and a Recall equals to 0.6818
which indicates features available in Lucas Kanade Opti-
calflow representations are learned more effectively with a
2D CNN architecture. 2D CNN architectures show better
performance than RNN architectures for detecting PSL ele-
ments.

nSDmV2 shows the highest performance reporting a loss
equals to 0.1651 a Precision equals to 1.0000 and Recall
equals to 1.000 and a AUC equals to 1.0000.

The results indicate ensemble models perform better
than single models justifying the effort to design models
that combine 2D CNN and RNN architectures. nSDmV2
shows the highest performance presumably related to the
classifiers removal action applied to Opticalflow and RGB
models and the subsequent concatenation which is then sent



to a new classifier layer (dense layer with softmax activa-
tion) as described in section 3.4.1.

5. Discussion and Future Work

We processed the five percent of the PSL dataset with the
proposed video annotation pipeline producing PSL samples
for nouns and numbers using the Lucas Kanade Opticalflow
representation and sequential RGB frames respectively. We
trained four models described on sections 3.2, 3.3 and 3.4
obtaining results presented on section 4. Results shown over
fitting due to number of samples used to train the models.
As a continuation of this work we will continue processing
the rest of the PSL dataset and train models to improve their
robustness.

A successful supervised learning task requires a labeled
dataset where samples are carefully produced and anno-
tated. The video annotation pipeline described on section
3.1 requires a significant amount of human intervention to
find video segments where signs are followed by a transla-
tion delivered after a delay factor that varies between trans-
lations. In this work we have estimated a delay factor of 3
seconds to ensure extracted frames contain the target sign
but a the same time it introduces additional frames requir-
ing human intervention to remove frames that are not rel-
evant to the target sign. Applying self supervised learn-
ing techniques to avoid or minimize the need for human
intervention while labeling the PSL dataset and other ex-
ternal PSL datasets available like the ”Aprendo en Casa”
dataset (Gisella Bejarano et al.) is the natural next step for
this work where pre-trained nSDm models enriched with an
auto-encoder architecture can be used to remove the need
to human intervention on the proposed video annotation
pipeline.

State of art on pose estimation and body expressions de-
tection are based on key points, joints and heat maps re-
gression. The method described in this work is a supervised
learning task for signs classification, converting a classifica-
tion problem into a regression one seems to be a good option
that could be beneficial. Movement across frames is cap-
tured with Opticalflow showing the body parts a PSL con-
sultant moved to emit a sign. We are looking for a method
for calculating key points and joint coordinates from Op-
ticalflow samples, caluculated key points and joint coordi-
nates which are inputs for a 2D CNN (dowsampling) and
2D Transposed CNN (upsampling) for heat maps regression
that will finally be used to detect PSL elements.

6. Conclusion

Human intervention was required for cleaning and pre-
processing input videos before they can passed to the pro-
posed video annotation pipeline. It positively affected pro-
duced samples quality because video segments contain-

ing noise and non relevant frames can be easily removed
in advance. A Delay Factor between signs emitting and
signs translation introduces noise because it varies on each
produced sample requiring additional human intervention
to post-process produced samples to remove non relevant
frames.

Lucas Kanade Opticalflow feature tracking method suc-
cessfully represented movement that occurred during signs
emitting, it is important to note that when a sign is emitted
many body parts are moved including arms, hands, head,
neck and eyes, Opticalflow is capable to capture movement
patterns for the entire body configuring an excellent tool
for visual features representation in PSL elements. It is a
very CPU inexpensive algorithm that can be applied as a
data augmentation/transformation in data input pipelines for
both training and test allowing to expand its utilization to a
wide range of datasets.

Opticalflow model shown better performance than the
RGB recurrent model in terms of AUC, Precision and Re-
call, the Opticalflow model uses a pre-trained RestNet152
base model with transfer learning (freezing) indicating that
using a pre-trained base model positively affect the model
performance. RGB recurrent model performance is subject
to improve as we train with more PSL samples.

Ensemble models shown better performance than Opti-
calflow and RGB recurrent models where nSDmV2 shown
the highest performance. The nSDmV2 novel architecture
where pre-trained base models were popped and then con-
catenated allowing adding additional layers for learning fea-
tures after based model were concatenated and subsequent
classifier.

The area under the precision-recall curve allow measur-
ing how well is nSDm detecting because it summarizes the
trade-off between the true positive signs rate and the pre-
dicted signs.
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