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Abstract

Wildfires stand as one of the most relevant natural dis-
asters worldwide, particularly more so due to the effect of
global warming and its impact on various societal and en-
vironmental levels. In this regard, a significant amount of
research has been done to apply traditional computer vision
techniques, using several imaging modalities and technolo-
gies to address this problem. Although there is work regard-
ing Deep Learning (DL)-based fire segmentation, it is cur-
rently unclear whether the architecture of a model, its loss
function, or the image type employed (visible, infrared, or
fused) has the most impact on the fire segmentation results.
In the present work, we evaluate different combinations of
SOTA DL architectures, loss functions, and types of images
to identify the parameters most relevant for the improve-
ment of the segmentation results. Finally, we benchmark the
generated combinations to identify the top-performing one
and compare it to traditional fire segmentation techniques.
To the best of our knowledge, this is the first work that evalu-
ates the impact of the architecture, loss function, and image
type in the performance of DL-based wildfire segmentation
models.

1. Introduction

Wildfires can occur naturally or due to human activities
and have the potential to get out of control and have a sig-
nificant impact on the environment, properties, and lives.
We can see examples of the latter in the terrible damage
caused by the Australian wildfires of 2019 and 2020 that
took the lives of at least 28 people [14] and the devastat-
ing 2020 wildfire season in California in which 6.7 million
acres burned [9]. Tasks such as wildfire detection, segmen-
tation, and characterization are relevant as geometric fea-
tures of a fire are necessary to understand and model the
events that develop during its propagation [13].

Fire segmentation is a relevant task as it allows the de-
tection of the distribution region of the flame. The latter
enables a quick location of specific areas of interest [2].
The main advantage of the segmentation of RGB images is
the accurate detection and localization of objects in a single
operation [4].

The fusion of visible and infrared images has the poten-
tial to improve the robustness, accuracy, and reliability of
fire pixel detection systems [16]; however, DL-based meth-
ods for wildfire segmentation with visible-infrared fused in-
formation have not yet been investigated. Works such as
the one by Nemalidinne et al. [7] and Toulouse [10] ad-
dress visible-infrared image fusion for fire imagery, with the
FIRe-GAN model [3] being one of the only works address-
ing a DL-based approach for the said task. Furthermore, it is
still unclear if the inclusion of fused information allows for
a significant improvement in the segmentation performance
of a model or if factors such as the architecture and loss
function play a more relevant role in the said performance.

The main research problem of this work focuses on the
evaluation of different combinations of DL architectures,
loss functions, and types of images (visible, infrared, and
fused), identifying the best performing combinations and
the elements that display the most impact in the segmenta-
tion performance as measured by selected metrics. Finally,
we benchmark the top combination against traditional fire
segmentation techniques.

The paper proceeds as follows. Section 2 describes the
dataset and methods and states the technical contribution of
this work. Section 3 presents the results. Finally, Section
4 shows the conclusions and potential future work avenues.

2. Data and methods

For the present paper, we employ the visible-infrared im-
age pairs of the Corsican Fire Database, first presented by
Toulouse et al. [12]. This dataset contains 640 pairs of
visible and near-infrared (NIR) fire images, alongside their
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corresponding ground truths for fire region segmentation.
Figure 1 displays a sample visible-NIR image pair from

the Corsican Fire Database with its corresponding ground
truth.

(a) Visible (b) NIR (c) Ground truth

Figure 1: Sample images of the Corsican Fire Database.

The technical contribution of this work is the evaluation
of three DL architectures proposed in the current state-of-
the-art for visible image-based wildfire segmentation with
three loss functions and four types of images (visible, NIR,
and fused images generated by two methods). We obtain
the source visible and NIR images from the Corsican Fire
Database. We then evaluate the segmentation results of
the 36 resulting combinations with three selected metrics,
identifying the best performing one. In the following sub-
sections, we describe the employed DL architectures, loss
functions, and fused images.

2.1. Loss functions

We evaluate the performance of three loss functions: the
Dice loss, the Focal Tversky loss, and the Mixed Focal loss.
The Dice loss is an adaptation of the Dice similarity co-
efficient, a common metric in the field of computer vision
to assess the similarity between two images [5]. The Fo-
cal Tversky loss is an adaptation of the Tversky loss that
weights down regions that are easy to classify in favour of
more difficult ones [15]. Finally, the Mixed Focal loss is
proposed by Yeung et al. [15] to handle input and out-
put imbalance; it is a compound loss function derived from
variants of the Focal loss and Focal Dice loss functions.

2.2. Deep Learning architectures

The first architecture we evaluate is the one proposed by
Akhloufi et al. [1]. The authors present a U-Net-based
model. The second architecture is the one proposed by
Choi et al. [2] that displays a FusionNet-like structure,
with the addition of residual blocks to increase FusionNet’s
ensemble effect through skip connections. Choi et al. train
the network with visible images and a mean squared error
(MSE) loss function. Finally, the last architecture we test
is the one proposed by Frizzi et al. [4]. The authors im-
plement VGG16 backbone as an encoder, substituting the
fully connected layers with a convolution step that serves as
a connection to the decoding phase. The decoding step is
comprised of transpose convolutions and skip connections
in a U-Net-like fashion.

Table 1: Top three best performing combinations per metric.

Metric Value Arch. Loss Image

MCC
0.9252 Akhloufi Dice Visible
0.9248 Choi F. Tversky Visible
0.9231 Akhloufi F. Tversky Visible

F1
0.9323 Akhloufi Dice Visible
0.9274 Akhloufi F. Tversky Visible
0.9265 Choi F. Tversky Visible

HAF
0.9098 Akhloufi Dice Visible
0.9068 Choi F. Tversky Visible
0.8957 Akhloufi F. Tversky Visible

2.3. Fused images

We employ fused images generated by the V GG19 fu-
sion framework proposed by Li et al. [6] and of the previ-
ously proposed FIRe-GAN model [3]. Figure 2 displays
sample fused images obtained through both methods from
the source images presented in Figure 1.

(a) (b)

Figure 2: Sample visible-NIR fused images for the VGG19
method in 2a and for the FIRe-GAN model in 2b

3. Results
All 36 resulting combinations are trained with 100

epochs, Adam optimizer, batch size of 4, and a learning
rate of 0.0001. We apply the benchmarking method that
Toulouse et al. [11] use to evaluate their proposed fire
segmentation technique, which employs the Matthews Cor-
relation Coefficient (MCC), the F1 score, and the Hafiane
quality index (HAF) as evaluation metrics, and compare the
results of the best performing one with the best traditional
fire segmentation method identified by Toulouse et al. Ta-
ble 1 displays the top three performing combinations per
metric.

We can observe that the best scoring combination for
all metrics is the one with the architecture proposed by
Akhloufi et al. [1] with the Dice loss and visible images. In
Figure 3 we show the results for every parameter to identify
the ones that display less variability.

Next, we can see that the architecture by Akhloufi et al.
[1] and the Focal Tversky loss present by far the most robust
results, displaying little variability. In contrast, the results
grouped by image type present very similar results and vari-
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(a) Architecture

(b) Loss function

(c) Image type

Figure 3: Results per architecture, loss function, and image
type.

ability margins. The latter suggests that the performance is
more dependant on the architecture and loss function.

We then analyze the obtained data to explore the corre-
lation between the variables (loss functions, architectures,
and image types) and the results per metric. In Figure 4, we
present the Pearson correlation matrix between the different
parameters and the target variables MCC, F1 and HAF.

First, we observe that the target variables are highly cor-
related with each other. The latter means that in future
works, employing just one metric would suffice for perfor-
mance evaluation. We can also see that the Akhloufi archi-
tecture and the Focal Tversky loss display a high positive
correlation with the three evaluation metrics. In contrast,
the correlation of all image types with the said metrics is
close to zero, with the visible images displaying a very weak
positive correlation.

Finally, taking into account the robustness of each pa-
rameter, as well as their correlation with the performance
metrics, we select the Akhloufi architecture coupled with
the Focal Tversky loss and visible images as the best one
for further comparison with the best traditional fire segmen-
tation technique found by Toulouse et al. [11]. Table 2
displays the results for this comparison.

Figure 4: Correlation matrix of the parameters and target
variables MCC, F1 and HAF.

Table 2: Comparison between best found combination and
the best traditional segmentation method per metric.

Metric Method Value

MCC Akhloufi + F. Tversky + visible 0.92
Phillips et al. [8] 0.81

F1 Akhloufi + F. Tversky + visible 0.92
Phillips et al. [8] 0.82

HAF Akhloufi + F. Tversky + visible 0.89
Phillips et al. [8] 0.75

4. Conclusion and future work
In this work, we can observe that for the images of the

Corsican Fire Database, the architecture and loss function
of a DL model for fire segmentation appear to be more rel-
evant for its performance than the image type. Since the
visible and FIRe-GAN images are color ones, and the NIR
and VGG19 ones are in a grayscale format, the presence of
color does not appear to make a significant difference for
DL methods. The latter is a relevant difference against tra-
ditional fire segmentation methods, in which color is one of
the most important factors. We consider the combination
of Akhloufi + Focal Tversky + visible images the best per-
forming one. This combination clearly outperforms the best
traditional fire segmentation method.

Finally, the NIR and fused images are expected to pro-
vide an advantage when the smoke occludes significant por-
tions of the fire regions. The development of fire image
datasets with these types of images could allow for the com-
parison of the segmentation performance between images
with significant smoke occlusion and less challenging ones.
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