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Abstract

Image-based tracking of laparoscopic instruments plays
a fundamental role in computer and robotic-assisted surg-
eries by aiding surgeons and increasing patient safety.
Computer vision contests, such as the 2019 Robust Med-
ical Instrument Segmentation (ROBUST-MIS) Challenge,
encourage the development of robust models for surgical in-
strument segmentation and provide large, diverse, and ex-
tensive annotated datasets. To date, most of the existing
models for instance segmentation of medical instruments
were based on two-stage detectors, which provide robust
results but are nowhere near to the real-time (5 frames-per-
second (fps) at most). However, in order for the method
to be clinically applicable, real-time capability is utmost
required along with high accuracy. In this paper, we pro-
pose the addition of attention mechanisms to the YOLACT
architecture that allows real-time instance segmentation of
instrument with improved accuracy on the ROBUST-MIS
dataset. Our proposed approach outperforms the winner
of the 2019 ROBUST-MIS challenge in terms of robustness
scores, obtaining 0.338 MI DSC and 0.383 MI NSD, while
achieving real-time performance (37 fps).

1. Introduction

Computer-assisted minimally invasive surgery such as
endoscopy has grown in popularity over the past years.
However, due to the nature of these procedures, issues like
limited view, extreme lighting conditions, lack of depth in-
formation and difficulty in manipulating operating instru-
ments demand strenuous amounts of effort from the sur-
geons [6]. Surgical data science applications could pro-
vide physicians with context-aware assistance in order to
overcome these limitations and increase the patient’s safety.
One of the main forms of assistance is by providing accu-
rate tracking of medical instruments, as it is a fundamen-
tal prerequisite for tasks ranging from surgical navigation,

skill analysis and complication prediction [3]. Nonetheless,
accurate tracking of instruments often face difficult image
scenarios such as bleeding, over/under exposure, smoke and
reflections [4].

Computer vision contests, such as the Robust Medical
Instrument Segmentation (ROBUST-MIS) Challenge [6]
represent necessary efforts to encourage the development of
robust models for surgical instrument segmentation. They
integrate the developments in computer-assisted surgeries,
and benchmark the generalization capabilities of the devel-
oped methods on different clinical scenarios. Furthermore,
they provide large high-quality datasets to overcome one of
the main bottlenecks of the development of robust method-
ologies, which is the lack of annotated data.

Previous approaches for instance segmentation of medi-
cal instruments were exclusively based in two-stage detec-
tors such as Mask R-CNN [8]. While these models pre-
sented robust performance, they all suffer from high infer-
ence times, preventing them for achieving real-time perfor-
mances, averaging around 5 fps. Realistically, real-time
performance is mandatory in order to fully exploit the ca-
pabilities of tracking applications in live surgeries.

To overcome the speed bottleneck while maintaining a
robust performance in terms of tool segmentation results,
we propose a new approach based on YOLACT++ [1]
equipped with attention modules on the multi-scale outputs
of the network’s backbone and Feature Pyramid Network
(FPN). The increased representation power achieved by us-
ing attention allows the extraction of more discriminant fea-
tures, suppressing the less effective ones and helping the
model to learn salient features from the input images, which
is essential for a robust performance. We carried out ex-
periments using two different types of attention modules:
Criss-cross Attention [7] and Convolutional Block Atten-
tion Modules [11]. The former, recursively integrates global
context along feature maps in a fast and clever criss-cross
fashion. The latter emphasizes relevant features along the
channel and spatial axes by blending cross-channel and spa-
tial information together. Our proposed model outperforms
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others in the state of the art by a good margin, as it will be
discussed in the rest of the paper.

2. Methods
2.1. Dataset

The Heidelberg Colorectal Data Set [3] served as a ba-
sis for the ROBUST-MIS challenge. It comprises 30 sur-
gical procedures from three different types of surgery and
includes detailed segmentation maps for the surgical in-
struments in more that 10,000 laparoscopic video frames.
The generalizability and performance of the submitted al-
gorithms was assessed in three stages with increasing lev-
els of difficulty. In Stage 1, test data was taken from the
procedures from which the training data were extracted. In
Stage 2, test data was taken from the exact same type of
surgery as the training data but from procedures not in-
cluded in the training. Finally, in Stage 3, test data was
taken from a different but similar type of surgery compared
to the training data. A total of 996 frames with no visi-
ble instruments were removed from the training set, leav-
ing 4,987 usable frames. From this subset, an 85-15 per-
cent split was made for training and validation purposes re-
spectively. As an additional step, the training and valida-
tion datasets were converted to COCO-style for easier inte-
gration with the YOLACT framework. We heavily applied
data augmentation techniques to introduce as much variabil-
ity as possible and increase the model’s performance. The
augmentation techniques that were used are random pho-
tometric distort, random scaling, random sample crop and
random mirror.

2.2. Metrics

Two metrics were chosen to assess performance of the
multiple instance segmentation task: Multiple Instance
Dice Similarity Coefficient (MI DSC) and Multiple In-
stance Normalized Surface Dice (MI NSD). The DSC [2]
is defined as the harmonic mean of precision and recall:

DSC(Y, Ŷ ) :=
2 | Y ∩ Ŷ |
| Y | + | Ŷ |

, (1)

Where Y indicates the ground truth annotation and Ŷ the
corresponding prediction of an image frame.

The NSD measures the overlap of two mask borders [5].
The metric uses a threshold that is related to the inter-rater
variability of the annotators. According to [6], their calcu-
lations resulted in a threshold of τ := 13 for the challenge’s
data set.

To calculate the MI DSC and MI NSD, matches of in-
strument instances were computed. Then, the resulting met-
ric scores per instrument instance per image were aggre-
gated by the mean.
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Figure 1. Proposed Attention YOLACT++ architecture with
ResNet-101 backbone + FPN. Attention modules can be either
CBAM or CCAM (which are removed in some experiments.)

Note that the challenge reports robustness and accuracy
rankings. However, to compute accuracy it is mandatory to
know the per image results per participant, which are not
available due to privacy issues. For this reason, we will be
reporting only robustness rankings.

The robustness rankings pay particular attention in stage
3 of the challenge and focus on the worst-case performance.
For this reason, MI DSC and MI NSD are aggregated by
the 5% percentile instead of by the mean or median [6].

2.3. Proposed model

In order to improve the robustness of the real-time
YOLACT architecture used in our proposal, we introduce
attention modules between the multi-scale outputs of the
ResNet-101 backbone and the input of the FPN as well as
on the output features of the FPN (see Figure 1). Attention
allows the network to focus on the most relevant features
without the need of additional supervision, enabling it to
exploit salient features and avoid redundant use of informa-
tion. We performed experiments with two types of attention
modules: Criss-cross Attention (CCAM) [7] and Convolu-
tional Block Attention (CBAM) [11]. A characteristic that
these mechanisms have in common is that both are fast and
computationally efficient, which is crucial in order to intro-
duce as less time-processing overhead as possible.

CBAM sequentially infers a 1D channel and a 2D spa-
tial attention maps which are aggregated to create refined
features. The channel attention module extracts the inter-
channel relationship of features by first aggregating spa-
tial information through a combination of two pooling op-
erations, generating two spatial context descriptors which
are then forwarded to a multi-layer perceptron to create the
channel attention map Mc ∈ RC×1×1. Furthermore, the
spatial attention module generates a spatial attention map
by applying the same two pooling operations generating
two 2D maps which are then concatenated and convolved
to produce the 2D spatial attention map Ms ∈ R1×H×W .
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CCAM captures global contextual information effi-
ciently. For each pixel in a feature map, it aggregates con-
textual information in its horizontal and vertical directions.
By serially stacking two CCAM modules, each pixel can
collect contextual information from all pixels in a given fea-
ture map. Next, the contextually rich feature is concate-
nated with the original feature maps, followed by one or
several convolutional layers with batch normalization and
activation for feature fusion. For each type of attention, we
systematically attach modules first in the backbone’s fea-
tures, next in the FPN’s features and finally on both loca-
tions (which we refer as Full), following the naming con-
vention: AttentionType-AttentionLocation.

2.4. Experimental setup

Training was performed in an NVIDIA DGX-1 system.
We trained the models for up to 100,000 iterations with a
learning rate of 0.001, momentum of 0.9, weight decay of
5× 10−4, and batch size of 16. The performance was as-
sessed using the evaluation code for the challenge [9] and
the rankings were computed using the provided R package
challengeR [10].

3. Results and discussion
Among our models, those based on CBAM achieved bet-

ter performance than the ones based on CCAM. We hy-
pothesize that CBAM can extract stronger representations
as it generates attention maps for both the channel and spa-
tial dimensions, unlike CCAM which only integrates spa-
tial context. Regardless, attention-integrated models always
outperformed the attentionless baseline in terms of robust-
ness. Figure 2 shows dot-and-boxplots of the metric val-
ues for each algorithm over all test cases in stage 3 of the
challenge. We can observe that YOLACT++ plus ResNet-
101 is a strong baseline on its own, however, adding at-
tention mechanisms boosts the performance particularly on
instances below the second quartile, which are the most im-
portant for our performance metrics.

Next, we compare our top performing models and base-
line to the top participants of the 2019 challenge (note that
the 2020 edition did not take place). Table 1 shows the ag-
gregated MI DSC and MI NSD values achieved for each
participant/model. We achieve competitive results to the top
performing methods, and in the case of CBAM-Full (CBAM
on backbone and FPN) we outperform it by a significant
margin on both metrics, while attaining a frame rate of 37
fps. Our results prompt to a high effectiveness of incorpo-
rating attention mechanisms to empower the learning capa-
bilities of segmentation algorithms.

We observe high quality and temporally consistent
masks. Figure 3 illustrates some examples with varying
types and number of instruments. The model is robust
to occluded instruments and various harsh conditions, like

Figure 2. Dot-and-boxplots showing the performance of algo-
rithms for every test case in stage 3 of the challenge. Plots were
generated using the package challengeR [10].

Table 1. Aggregated evaluation performance for stage 3 of the
challenge by 5% percentile. The top section of the table shows the
3 best performing teams (2019 Edition); scores were taken from
[6]. The bottom section includes our best 3 experiments plus the
baseline model, which does not make use of attention modules.

Team/Algorithm MI DSC MI NSD FPS
www 0.31 0.35 5*
Uniandes 0.26 0.29 5*
SQUASH 0.22 0.26 5*
CBAM-Full 0.338 0.383 37
CBAM-FPN 0.315 0.333 37
CCAM-Backbone 0.313 0.338 31
Base YOLACT++ 0.000 0.000 43
*Approximated from their Mask R-CNN base,
real measurement is not reported

Figure 3. Side-by-side comparison of CBAM-Full evaluation re-
sults and ground truth annotations.

presence of blood, smoke, and poor lighting. Nevertheless,
it struggles with transparent instruments and small instru-
ments on the edge of the field of view. These problems will
be addressed in future work.
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