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Abstract Screening programs should have a coverage that exceeds

Breast Cancer (BC) is the most frequent malignancy in
women worldwide. The most effective technique for de-
tecting BC when the treatment can be more successful is
the mammography. Previous research using Artificial In-
telligence (Al) presented outstanding systems capable of
surpassing human experts in breast cancer detection using
mammography images. However, the main obstacle to de-
velop the clinical implementation of Al is the availability
of sufficiently curated, and representative training data that
includes expert labeling. In Mexico, we found a lot of mam-
mography images without any projection label, making it
very difficult to prepare these images and test these new Al
methods. In this work, we present two new simple, light
and fast Convolutional Neural Networks (CNN) models to
help classify the mammography projections in terms of left
or right (L/R) and Craniocaudal or Mediolateral oblique
(CC/MLO). We compare the proposed model, against three
state-of-the-art CNN using two datasets. The results con-
firm that the proposed models achieve the best classifica-
tion performance with fewer computational resources and
significantly less inference time by a factor range between
3.4-13.7. We hope that these models help to reduce the time-
intensive data preparation, increasing the data access from
more and diverse sources.

1. Introduction

According to the World Health Organization (WHO),
Breast Cancer (BC) is the most common malignancy of
women. The latest statistics of GLOBOCAN 2020, estimate
that BC was the fourth deadliest type of cancer worldwide
(6.9 %) [2]. The only method that has proven to reduce
the mortality rate by 20-30% is mammography screening.

70% of the target population, which in turn generates a pos-
itive impact on disease-free survival period and overall sur-
vival [1, 8].

Recently [5, 16] showed that Deep Learning (DL) mod-
els can outperform a group of radiologists in the BC clas-
sification of mammograms. However, most of these meth-
ods are based on a single (and specific) mammography pro-
jection. Typically, two projections, Craniocaudal or Medi-
olateral oblique (CC/MLO) are performed on each breast
(left/right) in the screening process. A major obstacle to de-
veloping clinical Al applications is that the data requires
a curation and labeling process to obtain better perfor-
mance [!5]. In many hospitals in Mexico, we found a lot
of mammography images without any projection labeling,
despite labeling being a quality control requirement in all
mammographic studies [10], making it very difficult (time-
intensive) to prepare a dataset and test these new DL meth-
ods. Although most of these hospitals obtain their images
in Digital Imaging and Communications in Medicine (DI-
COM) format, the DICOM-metadata is commonly missing.
As a result, we consider it feasible to develop new tools
to classify mammography projections to prepare and curate
the mammography data.

A popular approach in DL is the use of a pre-trained net-
work and customize it for another task. In general, the ben-
efits of the pre-trained models are saving training time and
getting better performance. Nevertheless, for some classi-
fication tasks, a simple model could be more accurate and
faster. The main contribution of this work, is to present
two new simple CNNs capable to classify the L/R and
CC/MLO mammography projections with the best trade-
off between accuracy performance and number of weights.
ProjectionNet is devoted to classify between CC and MLO
projections. LRNet is capable to classify the left and right
breast in the MLO projection. We compare this two CNN's


https://www.who.int/news/item/03-02-2021-breast-cancer-now-most-common-form-of-cancer-who-taking-action

against well known multi-propose CNNs: MobileNetV2 [9]
DenseNet121 [3], and InceptionV3 [14].

2. Data

We have used the Curated Breast Imaging Subset (CBIS)
[4], and mini-MIAS (m-MIAS) database of mammograms
[12]. Table I presents the number of train, validation and
test images. Note that in the testset we use a different
dataset to measure how well the models generalize.

Table 1: Train, validation and test data.

Class Traincgrs Valcgrs Testcprs Testarras

CC/MLO 598 67 1674275 322
L/R 590 66 164 322

value in their respectively search group. Figure | presents
the PNet and LRNet architectures.

Table 2: Bayesian optimization hyperparameters search
space.

Hyperparameter CC/MLO L/R

Act func [conv]
Neurons [conv]

[ReLU, tanh]
[mn: 8, mx: 128, s: 8]

Kernel [3,5,7]

Stride d:1 [1, 2]

Max pooling [2,3,4,5]

Dropout [mn:0.0, mx:0.7] [mn:0.0, mx:0.5]

Act func [dense] [ReLU, tanh]
Neurons [dense] [mn:32, mx:512, s:32] [mn:8, mx:128, s:8]
Learning rate [mn:1e-5, mx:le-2, sp:“LOG”, d:1e-3]

3. ProjectionNet and LRNet

Although CNNs architectures are commonly manually
designed by experience, we combine our experience with an
expert-knowledge, image analysis and Bayesian fine tuning
to select the most appropriate architecture.

To obtain the expert-knowledge, we made a review about
the mammography screening projections [13, 6, 7]. The
review understands the main anatomical characteristics of
both projections (pectoralis muscle, perimeter, posterior
nipple line, nipple, wide margin at the axilla, among oth-
ers). According to this information and our experience, this
problem is a coarse grain classification, based on the size of
the features we expect to be learned by the models. Also,
we propose to reduce the input size (image) to 32x32 to
help speed up the training and inference stages to accom-
plish our objective (simplicity).

As image analysis, we have used the first convolu-
tional layer activations (see supplementary material) and the
Grad-Cam visualization in order to evaluate the most im-
portant features. It is important to remark that most of the
mammography screening images are visually labeled with
a text landmark and this technique helps us to know if the
CNN learns the breast features or the text labels.

Finally, we use a Bayesian optimization search algorithm
in order to search and compare similar CNN hyperparame-
ters. Table 2 presents the Bayesian hyperparameter search
space. We performed 6 different searches establishing a
maximum of 15 trials running for 20 and 50 epochs for
CC/MLO and L/R tasks respectively, monitoring the val-
idation accuracy as metric to get the best model on each
search. Selected hyperparameters and classification perfor-
mance over the test dataset are presented in the Tables of
supplementary material. The proposed models PNet and
LRNet have the highest test accuracy and lowest test loss

*[mn=min value, mx=max value, s=step, sp=sampling, d=default value]

*[LOG=logarithm probability distribution]
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Figure 1: ProjectionNet (top) and LRNet (bottom) architec-
tures.

4. Experimental setup

We compare the proposed CNNs: ProjectionNet (input
shape: 32, 32) and LRNet (input shape: 32, 32) against Mo-
bileNetV2 (input shape: 224, 224) [9] DenseNet121 (input



shape: 224, 224) [3], and InceptionV3 (input shape: 180,
180) [14] using the same hardware' and same DL frame-
work: Tensorflow 2.1. We used 10-fold validation in or-
der to obtain the best model. For all models we use the
same preprocesing steps and the same training conditions
(20 epochs, ADAM optimizator, data normalization, binary
cross-entropy loss function, etc). The proposed CNN (PNet
and LRNet) were trained from scratch, whereas the others
architectures were pretrained with the ImageNet weights.
As data augmentation in all the cases we used random rota-
tion of 20 degrees and random zoom of 0.1.

The evaluation of their classification performance was
made by measuring the test accuracy, test loss, and AUC.
Additionally, we compare the number of trainable parame-
ters and the inference time of each model. We use the Grad
Cam technique [! 1] in order to analyze the most important
features of the models.

5. Results and analysis

Tables 3 and 4 show the classification performance com-
parison with pre-trained models MobileNetV2 (MNetV2),
DenseNet121 (DNet121) and InceptionV3 (IncepV3). 2

Table 3: Performance comparison between PNet and pre-
trained CNNs for CC/MLO classification task

Metric PNet  MNetV2 DNetl21 IncepV3
Test acc 0995 0.977 0.958 0.940
Test loss 0.026  0.090 0.174 0.767
AUC 0.999  0.998 0.997 0.979
Parameters* 20 2,320 7,090 21,820
Inf. Time** 7 37 99 50

*Thousands(K) **Average time (milliseconds) per test image

Table 4: Performance comparison between LRNet and pre-
trained CNNs for L/R classification task

Metric LRNet MNetV2 DNetl21 IncepV3
Test acc 0.988 0.798 0.502 0.770
Test loss 0.030 4.017 39.820 3.999
AUC 0.999 0.80 0.734 0.847
Parameters* 160 2,320 7,090 21,840
Inf. Time** 6 20 34 29

*Thousands(K) **Average time (milliseconds) per test image

The proposed CNNs have the highest test accuracy with
the lowest test loss and the best AUC for both classifica-
tion problems, showing a better generalization in both test

12GB NVIDIA GeForce GTX 950M, i7-6700HQ CPU @2.60GHz
2.59 GHz, RAM: 16 GB

21f we train from scratch these models, the classification performance
is significatively reduced under the same train conditions.
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Figure 2: Grad-CAM visualization comparison between
PNet (a), (¢) and MNetV2 (b) (d) for CC/MLO classifica-
tion.

(b) © (d)

Figure 3: Grad-CAM visualization comparison between
LRNet (a), (c) and MNetV2 (b) (d) for L/R classification.

datasets [4, 12]. The MNetV2 has the second-one perfor-
mance. The proposed CNNs show a significant difference
in the number of trainable parameters with a range of factors
between 14.5-136.4 for LRNet and 117.2-1102.5 for PNet,
while inference time is improved by a range of 3.4-5.7 for
LRNet and 5.1-13.7 for PNet. This finding confirms that
the proposed CNNs have the best trade-off between classi-
fication performance and inference time, using smaller and
simpler architectures. Additionally, we made a more de-
tailed comparison with MNetV2 trained with 100 epochs
(12 hours), for CC/MLO classification it achieves a test ac-
curacy of 0.986 and test loss of 0.185. For L/R classifica-
tion, MNetV2 obtains 0.956, 0.325 of test accuracy and test
loss respectively. These results are slightly better than the
20 epoch MNetV2. However the proposed CNNs have bet-
ter performance. In Figures 2 and 3 we present the gradient-
weighted class activation mapping (Grad-CAM) proposed
by [11] of each classification task, where the red color rep-
resents the most important features. It is possible to note
that localization maps of the proposed CNNs are highlight-
ing the anatomical regions of the breast (pectoral muscle,
nipple, edges, perimeter). In contrast, the MobileNetV2
gradients focuses mainly in broad areas with empty space.

6. Conclusion

In this work, we address a fundamental step for prepar-
ing mammography screening images by classifying the
CC/MLO and L/R projections. The proposed CNNs trained
have an exceptional classification performance and infer-
ence time tested against three state-of-the-art DL models.
The results demonstrate that smaller and simpler architec-
tures such as the proposed CNNs can be better to solve the



specific classification tasks that we addressed. The value
of this work lies in the fact that these models could help
to reduce the time-intensive data preparation-curation, in-
creasing data access. As a result, this work will help to
facilitate the access to more mammography data from unla-
beled projections, even with any DICOM information. As
future work, we would like to explore the deployment of
these models in the cloud due to their quick inference time
and also to embedded systems because of their low devel-
opment cost and portability.
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