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Abstract

We study the problem of improving domain generaliza-
tion on deep networks by reducing the bias towards texture
learned by these models when pre-trained in large color im-
age datasets like ImageNet. To do so, we present a style reg-
ularization to enforce more shape-biased learning. Also,
we propose an experimental setup using synthetically cre-
ated test sets using state-of-the-art style transfer methods.
We report our experiments on stylized versions of CIFAR-10
and STL-10 datasets. In our preliminary results presented
here, we show that our style regularization improves perfor-
mance on new domains but not as significantly as with style
augmentation.

1. Introduction
Despite shape appearing to be more important than size

and texture to categorize objects for children and adults
[13], ImageNet pre-trained deep networks are biased toward
texture [7] which might explain why a model trained in a
source domain performs poorly in a target domain, even if
the domain shift is not large. Texture information is usually
domain-specific and shape can be more important than size
and texture to categorize objects.

Improving network generalization by reducing bias to-
ward texture is already being investigated. In [7], the
authors show that ImageNet pre-trained networks learn
texture-biased feature extractors and that it is possible to
learn shape-biased representations using stylized images
providing improvement in object detection and robustness
towards image distortions. Following this work, many
[11, 3, 17] have explored different ways of using style aug-
mentation to successfully improve domain generalization.

Although style augmentation has proven useful, it needs
a longer training time to converge than most data augmen-
tation techniques, but also requires additional pre-trained
deep models to generate the stylized images and in most
cases additional datasets to extract the styles from. We
explore techniques to learn transferable representations to
more distant domains without the need for style augmen-

tation. In specific, we study a way to learn these unbi-
ased representations by means of a training regularization.
We hypothesize that style augmentation reduces the spectral
norm of the Gram matrix built with the feature activations
in a deep network layer. In this work, we propose an ex-
perimental framework using random styles generated as in
[11]. We also experiment in CIFAR-10 [12] and STL-10 [4]
datasets using LeNet [14] for CIFAR-10 and Inception v3
[16] for STL-10. We also present experiments varying the
number of convolutional layers included in the regulariza-
tion. In these preliminary results, we find that our regular-
ization improves domain generalization in our experimental
setting but it is still far from achieving results using style
augmentation. In the discussion section, we consider flaws
in our experimental setup that might cause this gap between
our results and style augmentation and discuss future work.

2. Related work

Domain generalization In [9], the authors propose a
benchmark to study domain generalization techniques in-
cluding seven multi-domain datasets, nine baselines algo-
rithms, and three model selection criteria. In [7], the authors
show that ImageNet pre-trained networks learn texture-
biased feature extractors and that it is possible to learn
shape-biased representations using stylized images (style
transfer) providing improvement in object detection and ro-
bustness towards image distortions. Concurrently with [9],
[3] study the advantages of style augmentation in domain
generalization. They use AdaIN [10] to perform style trans-
fer between images of a set of source datasets during train-
ing. In more related work, the authors in [11] propose to
use data augmentation with style randomization from a mul-
tivariate normal distribution to improve the generalization
of CNNs. Also, they argue that domain bias is a form of
over-fitting and it can be reduced using style augmentation
(not as a domain adaptation technique but it can reduce the
need for it). Similarly to [3] and [11], [17] also investigates
the use of style transfer as data augmentation to improve
domain generalization. Finally, [2] learns a regularization
function using the variability in the source domains follow-
ing a meta-learning framework.



Figure 1. Selected styles. Left. Training styles selected manually from the pool of 200 styles chosen by maximizing the frac-
tional distance (p = 0.3) between them from the N generated styles with [11]. Right. Testing styles. Mug picture taken from
https://github.com/philipjackson/style-augmentation.

Style transfer In [6], the authors show that learned fea-
ture representations from a high-performing CNN can be
used to independently process content (activations of the
top layers) and style (correlations between filter responses)
of an image by matching the Gram matrices of their feature
maps. In [15], the authors theoretically show that match-
ing these Gram matrices is equivalent to minimize the max-
imum Mean Discrepancy (MMD) with the second-order
polynomial kernel and experiment with several other distri-
bution alignment methods. [5] demonstrates that the manip-
ulation of the normalization parameters in each unit’s acti-
vation was sufficient to train a single style transfer network
across 32 varied painting styles. In [8], the authors present
a method trained with a large number of paintings that al-
lows real-time stylization and generalizes to previously un-
observed styles.

3. Style regularization
We hypothesize that same as an L2 regularization keeps

low parameter values, the style augmentation would reduce
the spectral norm of the covariance matrix of the feature ac-
tivations in a deep network layer. Intuitively, the regulariza-
tion should reduce the norm of the covariance matrix of the
feature activations, hence it would tend to the identity ma-
trix (i.e. minimizing the correlation between feature activa-
tions). Formally, given a feature map tensor A ∈ RC×H×W ,
its Gram matrixG ∈ RC×C is produced byG = ÂÂT , where
Â ∈ RC×HW is a reshaped version of the feature activations.
Our regularization for a batch of N images is given by:

R = α
N

∑

i

∣∣Gi∣∣p (1)

where p is the order of the norm and α is a scaling factor.
In our experiments, we get best results using the spectral
norm (p = 2) and a scaling factor of α = 1E-2.

4. Experiments
We first describe our experimental setup with the

datasets and methods used in our experiments. Then, we
present our results. We evaluate our results using the per-
image accuracy which are reported in Tables 1 and 2.

4.1. Experimental setup

For our experiments, we use CIFAR-10 [12] and STL-
10 [4] datasets with the train and test splits and classes as
proposed in each of the datasets. In addition, we propose
stylized train and test sets using the style transfer method
proposed in [11]. To do so, we sample randomly N >> 200
styles. Because of the high dimensionality of the vectors
required by [11] to produce each new style, we use a frac-
tional distance as proposed in [1] to select 200 “far-away”
styles for each train/test subset. Finally, we hand-pick 20
styles from the train set that differ the most from the 20
other styles of the test set (trying to guarantee that the styles
seen during training are sufficiently different from those in
testing). In Figure 1, we show the selected styles for train-
ing and testing.

During training, we use four different configurations for
the two datasets: no augmentation or regularization, tradi-
tional augmentation, style augmentation, and style regular-
ization. For traditional augmentation, we use random crops,
random grayscale, color jitter, random horizontal flips, ran-
dom rotations of up to 20 degrees, random erasing, and ran-
dom shear. For style augmentation, we use the method pro-



posed in [11]. For style regularization we use the method
proposed in Section 3, varying the number of convolutional
layers used in the regularization and the scaling factor of
the regularization during training. In the case of the STL-10
dataset, we get the best results using a scaling factor of 1E-2
and applying the regularization to the first 5 convolutional
layers and the first 3 inception modules (i.e. to all convo-
lutional layers of each module) of the inception v3. For
evaluation, we report the overall accuracy on three differ-
ent sets: no style modification (no-S), test stylization (test-
S), and train stylization (train-S). no-S is used as an oracle
performance and to see how much the introduced methods
decrease the accuracy when testing on non-stylized images.
train-S and test-S are used to differentiate when style aug-
mentation is used during training.

4.2. Results and discussion

Color jitter behaves similar to style augmentation
when images are too small. We perform experiments on
CIFAR-10 [12] following the experimental framework de-
scribed in Section 4.1. When image size is too small, us-
ing color jitter augmentation with high jittering values of
hue, saturation, and contrast increase performance on styl-
ized test sets comparatively with style augmentation per-
formance. Thus, this suggests that style changes on small
images discard texture changes, resulting in only color mod-
ifications, which might explain why our style regularization
does not improve performance in CIFAR-10. In Table 1, we
present results on CIFAR-10 dataset using traditional aug-
mentation (Trad.), style augmentation (Style), style regular-
ization (Reg.), and only color jitter augmentation (bottom
row) with increased jittering values. As shown in the last
row of Table 1, using color jitter augmentation only with
high hue, saturation, and contrast values improves perfor-
mance on the stylized test images comparatively with using
only style augmentation performance (compare second row
with bottom row in Table 1). In addition, we can see that
other traditional data augmentation techniques are not do-
ing much compared to increased color jitter only (compare
first row with bottom row in Table 1).

Experiments on STL-10. Style augmentation improves
performance on stylized test sets (compare second and bot-
tom rows in Table 2) but not significantly enough compared
to style augmentation (compare third and bottom rows in
Table 2). We suspect that one reason for the large differ-
ence in performance between style regularization and style
augmentation might be that we are not capturing different
enough styles between test and training sets, which causes
the model to overfit to the testing styles when using style
augmentation during training. A reason for us to believe
this is that the difference between test-S and train-S results
is not large enough. Finally, when improving performance

Data augmentation Accuracy (%)
Trad. Style Reg. no-S test-S train-S
✓ 66.2 21.9 21.5
✓ ✓ 67.6 50.1 49.2

✓ 63.3 39.7 39.8
✓ ✓ 65.9 20.8 21.1
◯ 66.5 35.9 35.8

◯: Color jitter only using high hue, contrast, and saturation values.
no-S: No style transfer on test set.
train-S: Applying train styles transfer on test set.
test-S: Applying test styles transfer on test set.

Table 1. Results on CIFAR-10. Accuracy (%) on CIFAR-10
test set using style transfer (see figure footnote). Training with
and without traditional (trad.), style augmentation, and style reg-
ularization. Traditional augmentation refers to random crop,
grayscale, color jitter, horizontal flip, rotation, and shear.

Data augmentation Accuracy (%)
Trad. Style Reg. no-S test-S train-S

62.8 15.3 14.0
✓ 65.4 20.6 20.2

✓ 63.2 41.0 45.9
✓ ✓ 63.3 58.2 58.6
✓ spe. 65.9 23.6 25.2

no-S: No style transfer on test set.
train-S: Applying train styles transfer on test set.
test-S: Applying test styles transfer on test set.
∗ increased scaling value.

Table 2. Results on STL-10. Accuracy (%) on STL-10 using style
transfer (see figure footnote). Training with and without traditional
(trad.) and style augmentation, and regularization (reg.).

in stylized test sets, style augmentation usually reduces per-
formance on the original STL-10 test set (no-S). However,
even though the increase in stylized test sets is not as big as
with style augmentation, using style regularization does not
harm performance in the original STL-10 test set.

5. Conclusion and future work

In this work, we proposed a style regularization to reduce
texture-biased representation learning and improve domain
generalization on deep networks. In addition, we proposed
a benchmark of stylized test sets to emulate domain shifts
between subsets. For future work, we will explore different
experimental setups like the ones used in [3, 17], and study
different configurations of our style regularization (e.g. re-
ducing the nuclear norm instead of the spectral).
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