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Abstract

In the context of variational auto-encoders, learning dis-
entangled latent variable representations remains a chal-
lenging problem. In this abstract, we consider the semi-
supervised setting, in which the factors of variation are la-
belled for a small fraction of our samples. We examine how
the quality of learned representations is affected by the di-
mension of the unsupervised component of the latent space.
We also consider a variational lower bound for the mutual
information between the data and the semi-supervised com-
ponent of the latent space, and analyze its role in the context
of disentangled representation learning.

1. Introduction

Many recent works have focused on improving the in-
terpretability of latent variable representations in the varia-
tional auto-encoder (VAE) framework [18, 19]. Notably, the
β-VAE optimizes a modified objective, where the KL regu-
larization term in the evidence lower bound (ELBO) is up-
weighted in order to increase statistical independence in the
latent space [10]. Other augmentations of the ELBO have
been explored, similarly designed to encourage the desired
properties in the posterior distribution of the latent variables
[2, 16, 5, 7, 6]. In the semi-supervised setting, the labelled
datapoints can be used to construct a supervised penalty
term that is also added to the objective function [17, 28, 23].
In some – but not all – cases, this partial supervision can
lead to disentangled generative models [20, 3, 14, 27, 22].

While unsupervised models have the benefit of requiring
no labeled data, the identification of meaningful latent fac-
tors requires manual inspection of latent traversals for each
model of interest. Given the rotational invariance of the pri-
ors that are commonly used in such models, this identifica-
tion is sensitive to initialization, amongst other difficulties
[24, 26]. On the other hand, semi-supervised VAEs offer
the possibility to pre-specify latent components using the

labelled datapoints [17, 28, 4, 30].
In this abstract, we evaluate the quality of the learned

representations in the semi-supervised VAE, as the dimen-
sionality of the unsupervised latent component is varied.
We demonstrate empirically that, given sufficient capac-
ity, the semi-supervised component of the latent space is
ignored by the decoder. This phenomenon occurs regard-
less of whether the encoder model provides an accurate es-
timation of the semi-supervised latents. As a result, regu-
lating the dimension of the latent space controls a tradeoff
between disentangling and reconstruction quality.

In addition, we propose a novel modification of the
ELBO, designed to maximize the mutual information be-
tween the semi-supervised latent variables and the decoder
outputs. While the mutual information is intractable in the
models of interest, we can construct a variational bound [1]
that results in a differentiable objective. We also show that,
for the VAE, this bound is equivalent to enforcing cycle con-
sistency in the latent space, an idea with precedent in deep
generative models [15, 33, 14, 27].

2. Semi-supervised Variational Autoencoder

Given a set of unlabelled samples, D = {x(i)}i∈U ,
together with a subset of labelled pairs Dsup =
{(x(i),y(i))}i∈S , our goal is to learn a generative model
of the form [17]:

(i) (z,y) ∼ p(z,y),
(ii) x ∼ pθ(x|z,y).

Typically, we model pθ(x|z,y) = N (µθ(z,y),Σθ(z,y)),
where µθ and Σθ denote deep networks parameterized by
θ. In this setting, the marginal likelihood is intractable, as is
the posterior. Therefore, the true posterior is approximated
by a variational family qφ(z,y|x), typically also parame-
terized by a neural network. The model parameters θ and
φ can then be trained jointly by maximizing the evidence
lower bound on the marginal likelihood. For the unlabelled
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samples, the ELBO takes the standard form:

L(θ, φ;x(i)) := Eqφ(z,y|x(i))

[
log

pθ(x
(i), z,y)

qφ(z,y|x(i))

]
≤ log pθ(x

(i)). (1)

As for the supervised samples, where y(i) is observed,
note that:

log pθ(x
(i),y(i)) = Eqφ(z|x(i),y(i))

[
log

pθ(x
(i), z,y(i))

qφ(z|x(i),y(i))

]
−KL(qφ(z|x(i),y(i))||pθ(z|x(i),y(i))).

(2)

Thus, using the non-negativity of the KL term, a similar
lower bound can be constructed:

Eqφ(z|x(i),y(i))

[
log

pθ(x
(i), z,y(i))

qφ(z|x(i),y(i))

]
≤ log pθ(x

(i),y(i)).

(3)

The label information is further incorporated in a super-
vised loss term, log qφ(y(i)|x(i)), to encourage the encoder
to learn a good mapping x 7→ y:

Lsup(θ, φ;x(i),y(i)) :=

Eqφ(z|x(i),y(i))

[
log

pθ(x
(i), z,y(i))

qφ(z|x(i),y(i))

]
+ α · log qφ(y(i)|x(i)). (4)

An aggregated objective over all data can then be con-
structed:

L(θ, φ;D,Dsup) =
∑
i∈U
L(θ, φ;x(i))

+
∑
i∈S
Lsup(θ, φ;x(i),y(i)). (5)

3. Disentanglement and Mutual Information
Semi-supervised VAEs can struggle to disentangle a gen-

erative factor of interest, even when (partial) label informa-
tion is available for such a factor [28]. As we will demon-
strate empirically, the key difficulty lies in the mapping
y 7→ x. Intuitively, the autoencoder x 7→ (z,y) 7→ x
can separately learn a regression mapping x 7→ y and a re-
construction mapping x 7→ z 7→ x. As a result, the decoder
will ignore the latent variable y, failing to disentangle the
generative factors of interest. In other words, a disentangled
factor y(i) need not provide an ideal input for the decoder
to obtain a good reconstruction of x(i). If so, the decoder
will tend to focus exclusively on its first input, z.

In order to address this shortcoming, we propose aug-
menting the semi-supervised objective (Eq. 5) with a mu-
tual information term between x and y (but not z). The

mutual information is taken under the generative model,
in other words, between the semi-supervised component
of the decoder input, and the decoder output. Intuitively,
this term encourages the information available in y, which
contains the disentangled latent variables of interest, to
flow through the decoder. Previous works have evaluated
information-theoretic criteria in variational autoencoders
[32, 8, 11, 31, 29]; here we apply a similar ideas specifi-
cally to the semi-supervised component of the latent space.

Let us denote the mutual information under the genera-
tive model as:

I(x,y) = H(y)−H(y|x), (6)

where H(y) = −Ep(y)[log p(y)] and H(y|x) =
−Epθ(y,x)[log pθ(y|x)] denote the entropy of y and the
conditional entropy of y|x, respectively. While the first
term H(y) is a constant and can be ignored for the pur-
poses of optimization, the second termH(y|x) involves the
intractable posterior and cannot be computed directly. How-
ever, we can construct a variational lower bound [1], again
using the non-negativity of the KL divergence:

−H(y|x) = Epθ(y,x)[log pθ(y|x)]

= Epθ(y,x)[log qφ(y|x)]

+ Epθ(y,x)
[

log pθ(y|x)

log qφ(y|x)

]
= Epθ(y,x)[log qφ(y|x)]

+ Epθ(x)[KL(pθ(y|x)||qφ(y|x)]

≥ Epθ(y,x)[log qφ(y|x)]

=: Ĩ(θ, φ). (7)

Importantly, this bound no longer depends on the intractable
posterior, allowing for efficient gradient optimization via
the reprameterization trick [18]. Namely, we can construct
a differentiable Monte Carlo estimate as follows:

1. Draw samples of (z,y) from the prior.
2. Feed them through the decoder network, and

add the appropriate noise distribution (as per the
reparametrization trick) to generate synthetic samples
of x.

3. Feed the synthetic samples back through the encoder
network to obtain “reconstructed latents” (ẑ, ŷ).

4. Compute the “latent error” between the original y and
the reconstructed ŷ, as measured by the log-probability
of qφ (in the normal case, −‖y − ŷ‖2). Note that ẑ is
not used for estimating Ĩ(θ, φ).

This procedure admits a simple interpretation: for the mu-
tual information to be high, the values of y should affect the
decoder output in such a way that the encoder can, in turn,
map back to the values of y that generated such an output.
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Model Identity error Lighting error Log-likelihood Reconstruction RMSE Mutual Information

Baseline 3.5% (±3.4) 17.6% (±1.8) 214.4 (±3.7) 0.70% (±0.03) -0.15 (±0.02)
dim(z)=10 3.3% (±2.0) 17.0% (±3.7) 211.1 (±4.7) 0.74% (±0.05) -0.16 (±0.02)
dim(z)=2 3.2% (±2.8) 11.9% (±8.7) 184.2 (±22.8) 1.05% (±0.29) -0.08 (±0.06)
γ=0.1 4.3% (±3.1) 8.3% (±1.1) 202.0 (±6.4) 0.79% (±0.05) -0.04 (±0.01)
γ=1.0 6.5% (±3.5) 7.2% (±1.7) 199.2 (±14.4) 0.82% (±0.13) -0.03 (±0.02)
γ=10.0 8.2% (±3.9) 7.5% (±1.9) 163.3 (±18.6) 5.82% (±0.58) -0.02 (±0.03)

Fully-sup 1.9% (±1.5) 3.1% (±3.8) 222.7 (±4.1) 0.59% (±0.03) -0.05 (±0.04)

Table 1. Evaluation metrics on held-out data. Estimation errors shown in parenthesis correspond to two standard errors over 16 random
initializations of the model. The descriptor in the first column shows where each model differs from the baseline model. The last column
shows a Monte Carlo estimate of the mutual information lower bound (Eq. 7), a quantity that depends only on the trained model and not the
held-out data. Note that the mutual information is applied to the lighting component only (since the baseline model was able to disentangle
the identity component).

Figure 1. Conditional dependence structure for our baseline semi-
supervised VAE [28]. x represents an image sample, y encodes
the identity of the subject and the lighting of the image, and z
encodes all other generative factors.

In other words, our mutual information criterion reduces to
a measure of cycle consistency in the latent space, an idea in
the spirit of [15, 33, 14, 27], but applied specifically to the
semi-supervised component y. Adding the mutual informa-
tion lower bound (Eq. 7) to our objective function (Eq. 5)
gives rise to a new optimization problem:

min
θ,φ
{L(θ, φ;D,Dsup) + γĨ(θ, φ)}, (8)

where γ is a hyperparameter that controls the relative
strength of the mutual information term.

4. Experiments
Our experimental setup uses the Extended Yale Face

Database B [9, 21], as processed by [12]. This dataset con-
tains a total of ∼1,700 images of 38 subjects under 45 il-
lumination conditions. All samples are labelled with the
identity of the subject and the lighting angle of incidence,
allowing us to fit both semi-supervised and fully-supervised
models.

Our baseline model is a semi-supervised VAE composed
of a 4-layer encoder, a 4-layer decoder, and an additional
layer mapping y to z,1 with dim(y) = 39 and dim(z) = 20

1We found empirically that such a layer had minimal impact on results.

(Figure 1) [28]. The unsupervised latent components z fol-
low independent standard normal prior distributions. The
semi-supervised latent y is composed by a 38-level cate-
gorical variable modeling the identity of the subject,2 and
an additional scalar variable modeling the lighting of the
image, i.e., the angle of incidence. 15% of the labels were
made available during training.

Our evaluation criteria include:

(a) Reconstruction quality, measured both qualitatively
and quantitatively, by log-likehood and reconstruction
RMSE.

(b) Classification accuracy for the identity component of
y.

(c) Regression error for the lighting component of y.
(d) Disentanglement, measured qualitatively as well as

through the mutual information lower bound of Equa-
tion 7.

Our results, summarized in Table 1, compare the baseline
model against:

(i) A fully-supervised objective, where 100% of the labels
are made available during training (Figure 2).

(ii) Models with reduced latent dimension (Figure 3).
(iii) An objective with the mutual information term, at

varying strengths γ (Figure 4).

5. Discussion
Figure 3 illustrates that regulating the dimensionality of

the unsupervised latent component is highly effective for
achieving disentangled representations. Intuitively, a low-
dimensional z corresponds to a narrow “information bottle-
neck”, encouraging the decoder to draw more heavily on
the information encoded in y. In fact, sufficiently reducing
dim(z) resulted in a disentangled representation for both

2During optimization, categorical latent variables are relaxed via the
Gumbel-Softmax distribution [13, 25].
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Figure 2. For a fixed input image, we show the model reconstruction, as well as latent traversals obtained by varying the identity and
lighting components of y. The baseline model (semi-supervised) fails to disentangle the lighting factor, which becomes possible under full
supervision (bottom right).
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Figure 3. Similar to Figure 2, for two semi-supervised models of reduced latent dimension. The semi-supervised model with just 2
dimensions for z (bottom row) achieves a disentangled representation for both identity and lighting, of comparable quality to the fully-
supervised model (Figure 2).
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Figure 4. Similar to Figure 2, for three semi-supervised models with varying strength γ applied to the mutual information term in the
objective function. Note the mutual information is applied to the lighting component only. As its strength increases, the reconstruction
quality degrades with little improvement in disentanglement.

identity and lighting, of similar quality to the fully super-
vised model (compare Figures 2 and 3). However, there is
some tradeoff between disentanglement and reconstruction
quality, since a lower dim(z) implies a less flexible model,
in this case leading to a small increase in reconstruction er-
ror (top 3 rows of Table 1). It is also worth remarking that
a reduction in dim(z) improves the out-of-sample accuracy
of the semi-supervised mapping x 7→ y, even though its
network architecture remains unchanged (of course, its gra-
dients will change due to shared weights and biases). This
suggests that the autoencoder x 7→ (z,y) 7→ x can act

as a regularizer on the classifier x 7→ y. On the other
hand, the mutual information term (Eq. 7) only provides
small improvements toward disentangling the latent space,
at the expense of a significant decrease in reconstruction
quality (Figure 4). This behavior indicates a similar trade-
off between reconstruction quality and cycle consistency in
the latent space. Taken together, these results indicate that
learning disentangled representations requires a fine balanc-
ing act between model architecture, objective function, and
partial supervision.
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