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Abstract

This paper tackles the 3D object detection problem,
which is of vital importance for applications such as au-
tonomous driving. Our framework uses a Machine Learn-
ing (ML) pipeline on a combination of monocular camera
and LiDAR data to detect vehicles in the surrounding 3D
space of a moving platform. It uses frustum region pro-
posals generated by State-Of-The-Art (SOTA) 2D object de-
tectors to segment LiDAR point clouds into point clusters
which represent potentially individual objects. We evaluate
the performance of classical ML algorithms as part of an
holistic pipeline for estimating the parameters of 3D bound-
ing boxes which surround the vehicles around the moving
platform. Our results demonstrate an efficient and accurate
inference on a validation set, achieving an overall accuracy
of 87.1%.

1. Introduction
Over the preceding years self-driving vehicles have re-

ceived attention among the research community as a result
of their potential of improving mobility, safety and relia-
bility of transportation systems [1]. However, one of the
core capabilities needed to unveil the complete potential of
self-driving vehicles is the ability to perceive the objects
surrounding it in the 3D space [2].

3D object detection allows autonomous agents to esti-
mate the relative pose of multiple objects neighbouring an
ego-vehicle. Modern Deep Learning (DL) methods have
been extensively wielded to address this issue. Some of the
most common methods work directly over point clouds with
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convoluted deep neural network architectures [3, 4] or by
creating a frustum region proposal, traditionally employing
a RGB camera and a depth sensor [1, 5, 6, 7]. Notwith-
standing the astonishing results presented by these models,
their implementation is usually occluded by the vast need of
computational resources required to deploy them [8]. Fur-
thermore, substantial amounts of labeled datasets such as
nuScenes [9] are needed to obtain acceptable accuracy lev-
els.

2. Research problem and motivation

In this paper we present a framework to address the men-
tioned issues by combining SOTA deep learning algorithms
for 2D detection with low-complexity, classical ML algo-
rithms. Particularly, we show how these techniques can
leverage the use of camera and LiDAR information to create
a frustum region proposal [5] and deliver 3D object detec-
tions with few data samples in real-time. Classic ML algo-
rithms have been exploited to resolve unsupervised learning
problems like clustering sparse point clouds [10, 11] or su-
pervised learning ones as pose parameter regression [12].
Nevertheless, there has not been significant research efforts
towards the employment of these techniques into an high-
level camera-LiDAR fusion for 3D object detection system.

The aforementioned considerations thoroughly motivate
the conceptualization of this work. This paper is driven
by the following research question: How to develop a ML
pipeline to detect vehicles in the 3D space leveraging the
utilization of mature 2D object detectors, using camera-
LiDAR data, to estimate 3D bounding boxes in real-time
for self-driving applications?
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Set x y z ψ w l h Avg. Avg. 3D Avg. BEV

Training 98.8 98.2 99.9 78.0 96.8 94.2 99.8 95.1 62.0 68.4

Test 96.6 97.8 95.4 55.7 80.7 88.4 95.0 87.1 42.7 47.8

Table 1: Evaluation metrics of the proposed method.

3. Technical contribution
In order to address this problem, we wield a set of differ-

ent classic ML algorithms to estimate the 3D bounding box
parameters of a given vehicle. Initially, we adopt a similar
approach as the one proposed in [5], where a frustum re-
gion proposal is assembled, taking advantage of SOTA 2D
object detectors [13] reason by which we will only focus
on the subsequent steps. Subsequently, the point cloud in-
stance inside the frustum proposal is segmented using the
DBSCAN [14] algorithm. Finally, a global feature rep-
resentation encoding the relevant information of the given
segmented instance is used as input for a Support Vector
Regressor (SVR) [15] to estimate the 3D bounding box pa-
rameters. The final goal is to estimate the x, y, z centroid
coordinates, the box dimensions w, l, h and its heading ψ.

Figure 1: Proposed framework for 3D object detection.

Other algorithms were tested like Random Forest [16],
XGBoost [17] for regression and KMeans [18] for cluster-
ing. Over different experiments, the SVR algorithm exhib-
ited the best results in terms of accuracy at a similar compu-
tational cost and less parameterization as the other regres-
sion algorithms. Likewise, KMeans constrained the cluster-
ing stage of the process as a specific number of cluster had
to be set regardless that a scene may have different objects

within. For the sake of space, only the assessment of the
pipeline with SVR and DBSCAN is presented in this work.

Our proposed framework is presented in Fig 1 and it fol-
lows the steps previously mentioned. The nuScenes dataset
is composed of 1000 scenes of 20 seconds each. In this
work we employed a small version of this dataset called
“Mini” which contains a total of 10 scenes [9]. Our model
was trained and tested using a total of 1420 image sam-
ples with the original image size provided in the dataset of
1600 × 900 pixels. All the images used have at least one
vehicle within and the dataset was split in 80% for training
and 20% for testing. To assess performance, the 3D Inter-
section Over Union (IoU) was used to measure the percent-
age of volume intersected between the predicted bounding
box and the ground truth.

Figure 2: 3D intersection over union results of ground truth
versus predictions for the test set.

As shown in Fig 2 approximately the 44% of predictions
have an IoU above the 50%. The thorough assessment of
the 3D IoU and Birds-Eye-View (BEV) metrics can be seen
in Table 1.

To obtain a thoroughly evaluation and establish which
parameters are affecting the 3D IoU score, the accuracy of
each one is presented in Table 1. From there it is possible
to see that the proposed framework is capable of accurately
estimating the centroid coordinates x, y, z and the bounding
box dimensions w, l, h except for the width which presents
an accuracy of approximately 80% in the test set. The low
performance achieved in ψ is due to the difficulty estimating
orientations with supervised learning techniques.
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Module
Instance

Segmentation
Feature

Extraction Regression Total

Training 11.1s± 2.3s 19.1s± 0.5s 2.6s± 8.3ms 32.8s± 2.35s

Inference 4.7ms± 4.8ms 13ms± 1.4ms 0.7ms± 1.2ms 18.4ms± 5.1ms

Table 2: Processing times through training and inference stages per module.

Additionally, in Table 1 is shown how with few data sam-
ples our proposed framework1 is capable to achieve an over-
all accuracy of 87.1% for the validation set with an aver-
age inference time of 18.4ms per image and point cloud
pair, using a 3.20 GHz CPU for training and inference. The
aforementioned results validates how using a small num-
ber of samples from the original dataset, classical ML algo-
rithms are capable to produce promising results with limited
data and computational results. In fact, deep learning based
SOTA algorithms are generally trained with huge datasets
as the nuScenes which is composed of approximately 1.4
million of images and 390 thousand LiDAR sweeps in or-
der to produce accurate results [9].

To assess the processing time of our high-level architec-
ture, Table 2 presents the training and inference time within
each stage of the process. There it is possible to notice how
our method is capable to train the whole system with 1136
images and LiDAR sweeps in roughly 32.8s and process a
new data sample in approximately 18.4ms or 55FPS in a
CPU-only setup. Compared with SOTA methods such like
[19] which has 11FPS using a Titan RTX GPU, our method
excels in processing time using limited amounts of data and
computational resources.

Method Cam Rad LiDAR mASE mAOE

CenterFusion X X - 0.142 0.085

Ours X - X 0.573 0.840

Table 3: Performance comparison with Baseline for 3D ob-
ject detection on nuScenes Dataset for the Car category.

We use the CenterFusion [20] model as baseline, in or-
der to compare our results. This was submitted for nuScenes
detection challenge in CVPR 20, and represents the SOTA
of models that rely in frustum region to perform 3D object
detection, what makes it the most suitable method to com-
pare with. The authors stated that the model was trained us-
ing nuScenes dataset where two Nvidia P5000 GPUs were
employed and the images size were reduced to 800 × 450
pixels in order to increase computational speed. The eval-
uation metrics used in the comparison are; Average Scale
Error (ASE) that is calculated as 1 – IoU after aligning cen-

1https://github.com/MikeS96/3d_obj_detection

ters and orientation, and Average Orientation Error (AOE)
that is the smallest yaw angle difference between prediction
and ground-truth in radians, where values close to zero are
better. The results used for this assessment were the ones
provided by the authors in the original paper [20].

Table 3 presents the results for the Car category. It
shows whether the methods use radar or LiDAR for mea-
suring depth. CenterFusion obtained 0.142 on ASE metric
and compared with our proposed method which obtained an
ASE of 0.573, we found that this difference may part from
the robustness of the first one and enhancements such as
Data Augmentation. Furthermore, our model is based on
classical ML algorithms which makes the models less com-
plex and faster to compute, necessary assets if working on
scarce computational resources.

By comparing the AOE metrics we found a significant
contrast with the baseline that shows 0.085 and ours that
obtained 0.840, due to our proposed method does not use
techniques such as MultiBin [21] architecture for orienta-
tion estimation, commonly used to solve this task.

Although the provided results do not surpass the current
SOTA methods in 3D object detection in terms of accuracy,
the given performance can be considered positive in sce-
narios where there are few amounts of data and the com-
putational resources are limited. Additionally, comparing
the results of our framework with the baseline, it is pos-
sible to notice that our models is capable to train and per-
form inference using only a CPU whereas the baseline relies
on the use of expensive GPUs, reason by which our high-
level framework could be deployed within low-cost settings.
With improvements such as the implementation of MultiBin
for heading estimation, the evaluation metrics could be con-
siderable boosted toward better results.

4. Conclusion
In this work, we propose a framework that is capable

of predicting 3D bounding boxes for vehicles and shows
promising results estimating its parameters using classic
ML techniques. Comparing our method with CenterFusion,
it is possible to notice that even if the accuracy does not
surpass the baseline's, the performance in training and in-
ference stages can be considered positive, and allows our
framework to be deployed within low-cost settings and its
use in real-time applications.
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