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Abstract

Video captioning is the task of predicting a semantic and
syntactically correct sequence of words given some context
video. The most successful methods for video captioning
have a strong dependency on the effectiveness of semantic
representations learned from visual models, but often pro-
duce syntactically incorrect sentences which harms their
performance on standard datasets. We address this limi-
tation by considering syntactic representation learning as
an essential component of video captioning. We construct
a visual-syntactic embedding by mapping into a common
vector space a visual representation, that depends only on
the video, with a syntactic representation that depends only
on Part-of-Speech (POS) tagging structures of the video
description. We integrate this joint representation into an
encoder-decoder architecture that we call Visual-Semantic-
Syntactic Aligned Network (SemSynAN), which guides the
decoder (text generation stage) by aligning temporal com-
positions of visual, semantic, and syntactic representations.
We tested our proposed architecture obtaining state-of-the-
art results on two widely used video captioning datasets.
This is a short version of a paper recently published at a
Computer Vision Conference. The complete reference has
been redacted to fulfill the double-blind restriction.

1. Introduction
In this short paper we describe our SemSynAN archi-

tecture which is an encoder-decoder model for vide cap-
tioning that, besides considering visual and semantic fea-
tures, incorporates in the decoder phase, a visual-syntactic
representation extracted from the input video (see Fig-
ure 1). The three types of representations (visual, semantic,
and syntactic) are combined with what we call var-norm-
compositional LSTM and adaptive fusion gates that decide
when and how to include each feature type in the token gen-
eration phase. Specifically, the main contributions of this
approach are as follows:

1. We propose a model to create visual-syntactic em-
beddings by exploiting the Part-of-Speech (POS) tem-
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Figure 1. Example of video caption generation with Visual-
Syntactic Embedding. The method computes high-level semantic
and syntactic representations from the visual representation of the
video. Next, the decoder generates a sentence from them.

plates of video descriptions. We do this by learning
two functions: φ(·) that maps videos, and ω(·) that
maps (POS tags of) captions, both into a common
vector space (see Figure 2). The learning process is
based on a match and rank strategy, and ensures that
videos and their corresponding captions are mapped
close together in the common space. Then, when pro-
ducing features for the decoder architecture (see the
next point), we can use the function φ(·) to map the
input video and generate our desired visual-syntactic
embedding. To the best of our knowledge, this is the
first approach to jointly learn embeddings from videos
and (POS tags of) descriptions. Moreover, our pro-
posal constitutes the first instance of effective use of
a ranking model to obtain syntactic representations of
videos.

2. We propose the Visual-Semantic-Syntactic Aligned
Network (SemSynAN) for video captioning that in-
tegrates global semantic and syntactic representations
of the input video. It learns how to combine vi-
sual, semantic, and syntactic information in pairs
(i.e., visual-semantic, visual-syntactic, and semantic-
syntactic) while generating output tokens. As our re-
sults show, this process produces more accurate de-
scriptions, both semantically and syntactically.

3. We evaluate our method on two widely used datasets:
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Figure 2. Visual-Syntactic Embedding. The model learns to map
from video and POS sequences to a common space by the func-
tions φ(·) and ω(·), preserving the relationship between visual
content and positive syntactic structures.

the Microsoft Video Description (MSVD) [11] and
the Microsoft Research Video-to-Text (MSR-VTT)
dataset [24]. We improve the state-of-the-art in both
datasets in all metrics except for one metric in MSR-
VTT. For instance, in MSVD, we obtain a relative
improvement of 10.8% for METEOR and 8.2% for
CIDEr, and in MSR-VTT, a relative improvement of
2.6% for BLEU-4 and of 1.7% for METEOR.

For the sake of space we now present the model’s per-
formance over to widely used datasets. We refer the reader
to Perez-Martin et al. [19] for more details about the ap-
proach.

2. Experiments and Results
Training Setup: To extract 2D-CNN features of the
video, we use ResNet-152 [8] feature extractor pre-trained
on ImageNet [4, 20]. For 3D-CNN, we use ECO [27]
and R(2+1)D [21] feature extractors, both pre-trained on
the Kinetics-400 dataset. On details, for frame-level rep-
resentations, we concatenate the ResNet-152 and ECO fea-
tures vectors, resulting in 3584-dimensional feature vectors.
Concerning global representation, we average these features
and concatenate it with the 512-dimensional R(2+1)D fea-
ture, obtaining a 4096-dimension global representation. To
represent text descriptions, we obtain the vocabulary from
the training set of each dataset. Next, we map each descrip-
tion to a sequence of vocabulary indices, putting the 〈eos〉
and 〈unk〉 tokens at the end and unknown words positions.

For the visual-syntactic embedding, we set the dimen-
sion common space dimension 512, the visual model’s hid-
den sizes to 2048 and 1024, and the syntactic model’s hid-
den size to 1024. We trained the model on the MSR-VTT
dataset using the cosine distance as the dist(·, ·) function,
a learning rate of 1 × 10−5, and a margin parameter of
0.1. Some methods like LSTM-E [15] use all ground-truth
captions, while others like LJRV [14] and Dong et al. [5]
randomly sample five ground-truth captions per video. We
follow the latter strategy. Our results demonstrate that, in
MSVD and MSR-VTT, five samples are sufficient for learn-
ing the cues about video captions’ syntactic structure.

We use Adam optimizer with an initial learning rate of

Table 1. Ablation study on the testing set of MSVD. Each row
reports the results by changing only one aspect of the method, e.g.,
w/o (v-se, se-sy) omits the v-se-LSTM and se-sy-LSTM layers.

Architecture BLEU-4 METEOR CIDEr ROUGEL

SemSynAN (ours) 64.4 41.9 111.5 79.5
w/o v-sy 59.4 39.4 107.2 77.0
w/o se-sy 58.3 39.5 106.8 76.3
w/o (v-se, se-sy) 48.5 34.3 75.8 72.1
w/o (v-se, v-sy) 56.7 37.2 92.0 74.9
w/o hfg 60.8 41.3 103.9 75.9
w/o R(2+1)D 61.9 39.7 105.4 77.0
w/o wl 50.5 39.8 98.1 73.5
w/o vd 49.2 39.4 101.4 74.0
w/o max 63.7 41.2 108.1 79.0

4×10−5 for the MSR-VTT dataset and 2×10−5 for MSVD
and a batch-size of 64. We trained for at least 50 epochs
with early-stopping criteria of 10 epochs. Each VNCL layer
has a hidden size of 1024, and we use a keep probability
of 0.8 for their dropout masks and 0.5 in all other cases.
We fine-tune the hyperparameters on the validation sets and
select the best checkpoint for testing according to a linear
combination of BLEU-4, METEOR, CIDEr, and ROUGEL

measures. We implemented our method on PyTorch [18],
and it is publicly available on GitHub1.

Ablation Study: Table 1 shows the results of nine ab-
lated experiments that we performed on the MSVD dataset.
Specifically, we evaluate our SemSynAN model by remov-
ing, in separate runs, one or two of our VNCL layers, the
fusion gates, the weighted-loss function, the dropout masks,
and the maximum sampling strategy. We refer the reader to
Perez-Martin et al. [19] for details about each ablated ex-
periment.

The first four rows of Table 1 demonstrate that our model
is significantly enhanced by including the syntactic infor-
mation on MSVD dataset, proving the proposed method’s
effectiveness. Overall, the performance of our model is im-
proved with the incorporation of each component.

Comparison with State of the Art on MSVD: Table 2
shows the proposed approach’s performance and other
state-of-the-art methods on the MSVD dataset. The SCN-
LSTM [6] and SAVCSS [2] methods process a semantic
representation by visual-semantic compositional LSTM de-
coders without considering the syntactic information. The
incorporation of syntactic representation with our compo-
sitional modules improves the performance in comparison
to those approaches. Likewise, the superior performance
of our sentence generator framework is demonstrated in
comparison to models that exploit fixed encoding based on
2D-CNN and 3D-CNN features, such as LSTM-E, SCN-
LSTM, SAVCSS. Two recent approaches [10, 22] use the
syntactic information from the POS tagging structure but

1Our code is publicly available at https : / / github .
com / jssprz / visual _ syntactic _ embedding _ video _
captioning
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Table 2. Performance comparison with the state-of-the-art meth-
ods on the testing set of MSVD dataset.

Approach BLEU-4 METEOR CIDEr ROUGEL

LSTM-E [15] 45.3 31.0 - -
SCN-LSTM [6] 51.1 33.5 77.7 -
TDDF [25] 45.8 33.3 73.0 69.7
MTVC [16] 54.5 36.0 92.4 72.8
BAE [1] 42.5 32.4 63.5 -
MFATT-TM-SP [13] 52.0 33.5 - -
ECO [27] 53.5 35.0 85.8 -
SibNet [12] 54.2 34.8 88.2 71.7
Joint-VisualPOS [10] 52.8 36.1 87.8 71.5
GFN-POS RL(IR+M) [22] 53.9 34.9 91.0 72.1
hLSTMat [7] 54.3 33.9 73.8 -
SAVCSS [2] 61.8 37.8 103.0 76.8
DSD-3 DS-SEM [9] 50.1 34.7 76.0 73.1
ORG-TRL [26] 54.3 36.4 95.2 73.9
SemSynAN (ours) 64.4 41.9 111.5 79.5

do not directly consider temporal relations between the vi-
sual, semantic, and syntactic representations. In the pro-
posed approach, the semantic and syntactic representations
are adaptively fused with the visual features, determining
the most accurate information for generating each word.
Hence, it is seen that our SemSynAN provides better scores
than the previous syntax-based approaches. Specifically,
our method has a relative BLEU-4 improvement of 4.2%(
64.4−61.8

61.8

)
, METEOR of 10.8%

(
41.9−37.8

37.8

)
, CIDEr of

8.2%
(
111.5−103.0

103.0

)
, and ROUGEL of 3.5%

(
79.5−76.8

76.8

)
.

Comparison with State of the Art on MSR-VTT: Ta-
ble 3 compares our SemSynAN model’s performance with
the recently published results on the MSR-VTT dataset.
Our approach surpasses the methods that exploit the POS
tagging structure of video captions [10, 22] and the ap-
proaches based on visual-semantic embeddings [12] and
compositions [2, 6]. Unlike CIDEnt RL [17], HRL [23],
GFN-POS RL(IR+M) [22], and SAVCSS [2], we do not
use reinforcement learning to directly maximize any met-
ric. However, our approach improves the results in terms of
all metrics except CIDEr, where GFN-POS RL(IR+M) [22]
rich a better score by reinforcing this score. Specifically,
our model has a relative BLEU-4 improvement of 2.6%(
46.4−45.2

45.2

)
, METEOR of 1.7%

(
30.4−29.9

29.9

)
, and ROUGEL

of 0.8%
(
64.7−64.2

64.2

)
. While, in terms of relative CIDEr,

our approach outperforms the models without reinforce-
ment learning by 1.6%

(
51.9−51.1

51.1

)
.

Qualitative Analysis: Figure 3 shows our model’s predic-
tions for three video examples of the MSVD dataset. To
observe the improvement in the captions generated by our
model, we compared these predictions with the outputs of
two of our ablated models, i.e., w/o v-sy and w/o (v-se,
se-sy). We highlighted some words and POS tags, where
the model combined the semantic and syntactic information
correctly. In these three examples, we can notice that our
proposal generates better descriptions than the ablated mod-
els. In the first example, our approach generates the syntac-
tic pattern “NN CC NN”. In the second and third examples,

Table 3. Performance comparison with the state-of-the-art meth-
ods on the testing set of MSR-VTT dataset. * denotes results that
were obtained by reinforcement learning of that metric.

Approach BLEU-4 METEOR CIDEr ROUGEL

TDDF [25] 37.3 27.8 43.8 59.2
MTVC [16] 40.8 28.8 47.1 60.2
CIDEnt RL [17] 40.5 28.4 51.7* 61.4
HRL [23] 41.3 28.7 48.8* 61.7
PickNet [3] 38.9 27.2 42.1 59.5
MFATT-TM-SP [13] 39.1 26.7 - -
SibNet [12] 40.9 27.5 47.5 60.2
Joint-VisualPOS [10] 42.3 29.7 49.1 62.8
GFN-POS RL(IR+M) [22] 41.3 28.7 53.4* 62.1
hLSTMat [7] 39.7 27.0 43.4 -
SAVCSS [2] 43.8 28.9 51.4* 62.4
DSD-3 DS-SEM [9] 45.2 29.9 51.1 64.2
ORG-TRL [26] 43.6 28.8 50.9 62.1
SemSynAN (ours) 46.4 30.4 51.9 64.7

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a man and woman are riding a motorcycle
a man and a woman are riding a motorbike
DT NN CC DT* NN VBP VBG DT NN
a man and woman are dancing
a man is riding a motorcycle
a man and woman are riding a motorcycle

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a man is putting food on a plate
the man is pouring sauce over the pasta
DT NN VBZ VBG NN IN DT NN

a man is stirring a container
a man is pouring sauce over spaghetti sauce over spaghetti sauce

a man is pouring sauce into a bowl

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a woman is applying makeup on her face
a woman is powdering her face
DT NN VBZ VBG NN* IN* PRP$ NN
a girl is styling her hair
a woman is applying eye shadow
a woman is applying makeup on her face

Figure 3. Three representative samples from the test split of
MSVD, which cover ground-truth captions and their POS struc-
ture, two of our ablation models, and our proposal. Highlighted,
the words and POS tags that the model predicted correctly.

different to the ablated models, our approach predicts the
syntactic patterns “NN IN DT NN” and “NN IN PRP$ NN”
respectively. In the last example, w/o v-sy and w/o (v-se,
se-sy) fail to generate the noun “face”.

3. Conclusions

In this paper, we presented an encoder-decoder model
for video captioning named SemSynAN capable of gener-
ating sentences with more precise semantics and syntax. As
part of this model, we proposed a technique to retrieve POS
tagging structures of video descriptions while obtaining a
high-level syntactic representation from visual information.
We show that paying more attention to syntax improves the
quality of descriptions. Our method guarantees the contex-
tual relation between the words in the sentence, controlling
the semantic meaning and syntactic structure of generated
captions. The experimental results demonstrate that our ap-
proach improves the state of the art on two of the most uti-
lized evaluation benchmarks on video captioning.
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